Answer:
The binary search tree BST that is created is shown in the figure in the attached file
The missing part of the question is to draw the balanced binary search tree containing the same numbers given in the question.
Answer:
a. 47.48%
b. 35.58%
c. 2957.715 KW
Explanation:

T₁ = 300 K


= 579.21 K
T₂ = 300+ (579.21 - 300)/0.8 = 649.01 K
T₃ = T₂ +
(T₅ - T₂)
T₄ = 1400 K
Given that the pressure ratios across each turbine stage are equal, we have;

= 1400×
= 1007.6 K
T₅ = T₄ + (
- T₄)/
= 1400 + (1007.6- 1400)/0.8 = 909.5 K
T₃ = T₂ +
(T₅ - T₂)
T₃ = 649.01 + 0.8*(909.5 - 649.01 ) = 857.402 K
T₆ = 1400 K

= 1400×
= 1007.6 K
T₇ = T₆ + (
- T₆)/
= 1400 + (1007.6 - 1400)/0.8 = 909.5 K
a.
= cp(T₆ -T₇) = 1.005 * (1400 - 909.5) = 492.9525 KJ/kg
Heat supplied is given by the relation
cp(T₄ - T₃) + cp(T₆ - T₅) = 1.005*((1400 - 857.402) + (1400 - 909.5)) = 1038.26349 kJ/kg
Thermal efficiency of the cycle = (Net work output)/(Heat supplied)
Thermal efficiency of the cycle = (492.9525 )/(1038.26349 ) =0.4748 = 47.48%
b. 
bwr = (T₂ -T₁)/[(T₄ - T₅) +(T₆ -T₇)] = (649.01 - 300)/((1400 - 909.5) + (1400 - 909.5)) = 35.58%
c. Power = 6 kg *492.9525 KJ/kg = 2957.715 KW
Answer:
a) The maximum possible heat removal rate = 2.20w
b) Fin length = 37.4 mm
c) Fin effectiveness = 89.6
d) Percentage increase = 435%
Explanation:
See the attached file for the explanation.
Do you have a picture of the question?