Answer:
The elevation at the high point of the road is 12186.5 in ft.
Explanation:
The automobile weight is 2500 lbf.
The automobile increases its gravitational potential energy in
. It means the mobile has increased its elevation.
The initial elevation is of 5183 ft.
The first step is to convert Btu of potential energy to adequate units to work with data previously presented.
British Thermal Unit -
Now we have the gravitational potential energy in lbf*ft. Weight of the mobile is in lbf and the elevation is in ft. We can evaluate the expression for gravitational potential energy as follows:
Where m is the mass of the automobile, g is the gravity, W is the weight of the automobile showed in the problem.
is the final elevation and
is the initial elevation.
Replacing W in the Ep equation
Finally, the next step is to replace the variables of the problem.
The elevation at the high point of the road is 12186.5 in ft.
Answer: freemasonry is Being a Mason is about a father helping his son make better decisions; a business leader striving to bring morality to the workplace; a thoughtful man learning to work through tough issues in his life.
Explanation:
Explanation:
Instantaneous center:
It is the center about a body moves in planer motion.The velocity of Instantaneous center is zero and Instantaneous center can be lie out side or inside the body.About this center every particle of a body rotates.
From the diagram
Where these two lines will cut then it will the I-Center.Point A and B is moving perpendicular to the point I.
If we take three link link1,link2 and link3 then I center of these three link will be in one straight line It means that they will be co-linear.

In order to develop this problem it is necessary to take into account the concepts related to fatigue and compression effort and Goodman equation, i.e, an equation that can be used to quantify the interaction of mean and alternating stresses on the fatigue life of a materia.
With the given data we can proceed to calculate the compression stress:



Through Goodman's equations the combined effort by fatigue and compression is expressed as:

Where,
Fatigue limit for comined alternating and mean stress
Fatigue Limit
Mean stress (due to static load)
Ultimate tensile stress
Security Factor
We can replace the values and assume a security factor of 1, then

Re-arrenge for 

We know that the stress is representing as,

Then,
Where
=Max Moment
I= Intertia
The inertia for this object is

Then replacing and re-arrenge for 



Thereforethe moment that can be applied to this shaft so that fatigue does not occur is 3.2kNm
Answer:
The strength coefficient is
and the strain-hardening exponent is 
Explanation:
Given the true strain is 0.12 at 250 MPa stress.
Also, at 350 MPa the strain is 0.26.
We need to find
and the
.

We will plug the values in the formula.

We will solve these equation.
plug this value in 

Taking a natural log both sides we get.

Now, we will find value of 

So, the strength coefficient is
and the strain-hardening exponent is
.