Explanation:
For a compound to show hydrogen bonding it is necessary that the hydrogen atom of the compound should be attached to more electronegative atom like fluorine, oxygen or nitrogen.
For example,
,
and
all these compounds contain an electronegative atom attached to hydrogen atom.
Therefore, these pure compounds will exhibit hydrogen bonding.
Thus, we can conclude that out of the given options
,
and
are the pure compounds which will exhibit hydrogen bonding.
I think the correct answer from the list of choices above is option B. <span>The chemical combination of two or more different atoms in fixed amounts is called a compound. There are two type of compounds namely the ionic and covalent compounds.</span>
Answer:
A potential
Explanation:
potential energy is a kind of energy which rest or stays in one position
To be able to answer this equations, we must set given information. Suppose the reaction to yield NO is:
N₂ + O₂ → 2 NO
Next, suppose you have 1 g of each of the reactants. Determine first which is the limiting reactant.
1 g N₂ (1 mol N₂/ 28 g)(2 mol NO/1 mol N₂)= 0.07154 mol NO present
Number of molecules = 0.07154 mol NO(6.022×10²³ molecules/mol)
<em>Number of molecules = 4.3×10²² molecules NO present</em>
Answer:
2 grams.
Explanation:
H2 + O2 ---> H2O2
Using molar masses:
2*1 g hydrogen reacts with 2*16 g oxygen.
so 2g H2 reacts with 32 g O2.