I see the light moving exactly at speed equal to c.
In fact, the second postulate of special relativity states that:
"The speed of light in free space has the same value c<span> in all inertial frames of reference."
</span>
The problem says that I am moving at speed 2/3 c, so my motion is a uniform motion (constant speed). This means I am in an inertial frame of reference, so the speed of light in this frame must be equal to c.
Answer:
I = 3.9 x 10⁷ W/m²
Explanation:
given,
Sheet of black paper dimension = 8.5 x 11 inch
Area of sheet = 8.5 x 11 = 93.5 inch^2
1 inch =0.0254 m
Area = 0.06032 m²
mass of sheet = 0.80 g
Force = m g = 0.8 x 9.8 x 10⁻³ N
= 7.84 x 10⁻³ N
speed of light = c = 3 x 10⁸ m/s
Using equation
where I is the intensity of light
I = 3.9 x 10⁷ W/m²
Intensity of the light is equal to I = 3.9 x 10⁷ W/m²
Answer:
Explanation:
The initial velocity, u, of the car=15m/s
The final velocity, v, of the car =0m/s
Time, t, taken for the car to come to a stop=5s
Acceleration is calculated by,
By substitution,
The negative sign implies that the car has decelerated.