Answer:
The answer to your question is V2 = 29.6 l
Explanation:
Data
Pressure 1 = P1 = 12 atm
Volume 1 = V1 = 23 l
Temperature 1 = T1 = 200 °K
Pressure 2 = 14 atm
Volume 2 = V2 = =
Temperature 2 = T2 = 300°K
Process
1.- To solve this problem use the Combine gas law.
P1V1/T1 = P2V2/T2
-Solve for V2
V2 = P1V1T2 / T1P2
2.- Substitution
V2 = (12)(23)(300) / (200)(14)
3.- Simplification
V2 = 82800 / 2800
4.- Result
V2 = 29.6 l
CxHy + O2 --> x CO2 + y/2 H2O
Find the moles of CO2 : 18.9g / 44 g/mol = .430 mol CO2 = .430 mol of C in compound
Find the moles of H2O: 5.79g / 18 g/mol = .322 mol H2O = .166 mol of H in compound
Find the mass of C and H in the compound:
.430mol x 12 = 5.16 g C
.166mol x 1g = .166g H
When you add these up they indicate a mass of 5.33 g for the compound, not 5.80g as you stated in the problem.
Therefore it is likely that either the mass of the CO2 or the mass of H20 produced is incorrect (most likely a typo).
In any event, to find the formula, you would take the moles of C and H and convert to a whole number ratio (this is usually done by dividing both of them by the smaller value).
d = √((x1 - x2)2 + (y1 - y2)2)
( -2 , 5 ) ( 12 , -1 )
↑ ↑ ↑ ↑
x1 y1 x2 y2
d = √((-2 - 12)2 + (5 - (-1))2) = √((-14)2 + 62) = √(196 + 36) = √232 = 2√58 ≈ 15.23
Answer:
Gold
Explanation:
Cranberry glass or 'Gold Ruby' glass is a red glass made by adding gold salts or colloidal gold to molten glass. Tin, in the form of stannous chloride, is sometimes added in tiny amounts as a reducing agent.