1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
professor190 [17]
3 years ago
7

Can anyone do these? I have 20 points for who ever can get them. I've completed everything else and these ones are what I'm stuc

k on. Please and thanks.

Chemistry
1 answer:
8_murik_8 [283]3 years ago
8 0
It would be something nvm forgot it
You might be interested in
Give the oxidation state of the metal species in each complex. ru(cn)(co)4 -
kogti [31]
The given complex ion is as follow,

                                              [Ru (CN) (CO)₄]⁻

Where;
            [ ]  =  Coordination Sphere

            Ru  =  Central Metal Atom  =  <span>Ruthenium

            CN  =  Cyanide Ligand

            CO  =  Carbonyl Ligand

The charge on Ru is calculated as follow,

                               Ru + (CN) + (CO)</span>₄  =  -1
Where;
            -1  =  overall charge on sphere

             0  =  Charge on neutral CO

            -1  =  Charge on CN

So, Putting values,


                               Ru + (-1) + (0)₄  =  -1

                               Ru - 1 + 0  =  -1

                               Ru - 1  =  -1

                               Ru  =  -1 + 1

                               Ru  =  0
Result:
          <span>Oxidation state of the metal species in each complex [Ru(CN)(CO)</span>₄]⁻ is zero.
3 0
3 years ago
Read 2 more answers
6. A 25.0-mL sample of 0.125 M pyridine is titrated with 0.100 M HCI. Calculate the pH
Vadim26 [7]

Answer:

a) pH = 9.14

b) pH = 8.98

c) pH = 8.79

Explanation:

In this case we have an acid base titration. We have a weak base in this case the pyridine (C₅H₅N) and a strong acid which is the HCl.

Now, we want the know the pH of the resulting solution when we add the following volume of acid: 0, 10 and 20.

To know this, we first need to know the equivalence point of this titration. This can be known using the following expression:

M₁V₁ = M₂V₂  (1)

Using this expression, we can calculate the volume of acid required to reach the equivalence point. Doing that we have:

M₁V₁ = M₂V₂

V₁ = M₂V₂ / M₁

V₁ = 0.125 * 25 / 0.1 = 31.25 mL

This means that the acid and base will reach the equivalence point at 31.25 mL of acid added. So, the volume of added acid of before, are all below this mark, so we can expect that the pH of this solution will be higher than 7, in other words, still basic.

To know the value of pH, we need to apply the following expression:

pH = 14 - pOH  (2)

the pOH can be calculated using this expression:

pOH = -log[OH⁻]  (3)

The [OH⁻] is a value that can be calculated when the pyridine is dissociated into it's ion. However, as this is a weak acid, the pyridine will not dissociate completely in solution, instead, only a part of it will be dissociated. Now, to know this, we need the Kb value of the pyridine.

The reported Kb value of the pyridine is 1.5x10⁻⁹ so, with this value we will do an ICE chart for each case, and then, calculate the value of the pH.

<u>a) 0 mL of acid added.</u>

In this case, the titration has not begun, so the concentration of the base will not be altered. Now, with the Kb value, let's write an ICE chart to calculate the [OH⁻], the pOH and then the pH:

       C₅H₅N + H₂O <-------> C₅H₅NH⁺ + OH⁻     Kb = 1.5x10⁻⁹

i)       0.125                                0             0

e)        -x                                   +x           +x

c)      0.125-x                              x             x

Writting the Kb expression:

Kb = [C₅H₅NH⁺] [OH⁻] / [C₅H₅N]    replacing the values of the chart:

1.5x10⁻⁹ = x² / 0.125-x --> Kb is really small, so we can assume that x will be very small too, and 0.125-x can be neglected to only 0.125, and then:

1.5x10⁻⁹ = x² / 0.125

1.5x10⁻⁹ * 0.125 = x²

x = [OH⁻] = 1.37x10⁻⁵ M

Now, we can calculate the pOH:

pOH = -log(1.37x10⁻⁵) = 4.86

Finally the pH:

pH = 14 - 4.86

<h2>pH = 9.14</h2>

<u>b) 10 mL of acid added</u>

In this case the titration has begun so the acid starts to react with the base, so we need to know how many moles of the base remains after the volume of added acid:

moles acid = 0.1 * (0.010) = 1x10⁻³ moles

moles base = 0.125 * 0.025 = 3.125x10⁻³

This means that the base is still in higher quantities, and the acid is the limiting reactant here, so the remaining moles will be:

remaining moles of pyridine = 3.125x10⁻³ - 1x10⁻³ = 2.125x10⁻³ moles

The concentration of pyridine in solution:

[C₅H₅N] = 2.125x10⁻³ / (0.025 + 0.010) = 0.0607 M

Now with this concentration, we will do the same procedure of before, with the ICE chart, but replacing this new value of the base, to get the [OH⁻] and then the pH:

        C₅H₅N + H₂O <-------> C₅H₅NH⁺ + OH⁻     Kb = 1.5x10⁻⁹

i)       0.0607                             0             0

e)        -x                                   +x           +x

c)      0.0607-x                           x             x

Writting the Kb expression:

Kb = [C₅H₅NH⁺] [OH⁻] / [C₅H₅N]    replacing the values of the chart:

1.5x10⁻⁹ = x² / 0.0607-x --> 0.0607

1.5x10⁻⁹ = x² / 0.0607

1.5x10⁻⁹ * 0.0607 = x²

x = [OH⁻] = 9.54x10⁻⁶ M

Now, we can calculate the pOH:

pOH = -log(9.54x10⁻⁶) = 5.02

Finally the pH:

pH = 14 - 5.02

<h2>pH = 8.98</h2>

<u>c) 20 mL of acid added:</u>

In this case the titration it's almost reaching the equivalence point and the acid is still reacting with the base, so we need to know how many moles of the base remains after the volume of added acid:

moles acid = 0.1 * (0.020) = 2x10⁻³ moles

moles base = 0.125 * 0.025 = 3.125x10⁻³

This means that the base is still in higher quantities, and the acid is the limiting reactant here, so the remaining moles will be:

remaining moles of pyridine = 3.125x10⁻³ - 2x10⁻³ = 1.125x10⁻³ moles

The concentration of pyridine in solution:

[C₅H₅N] = 1.125x10⁻³ / (0.025 + 0.020) = 0.025 M

Now with this concentration, we will do the same procedure of before, with the ICE chart, but replacing this new value of the base, to get the [OH⁻] and then the pH:

        C₅H₅N + H₂O <-------> C₅H₅NH⁺ + OH⁻     Kb = 1.5x10⁻⁹

i)       0.025                                0             0

e)        -x                                   +x           +x

c)      0.025-x                             x             x

Writting the Kb expression:

Kb = [C₅H₅NH⁺] [OH⁻] / [C₅H₅N]    replacing the values of the chart:

1.5x10⁻⁹ = x² / 0.025-x --> 0.025

1.5x10⁻⁹ = x² / 0.025

1.5x10⁻⁹ * 0.025 = x²

x = [OH⁻] = 6.12x10⁻⁶ M

Now, we can calculate the pOH:

pOH = -log(6.12x10⁻⁶) = 5.21

Finally the pH:

pH = 14 - 5.21

<h2>pH = 8.79</h2>
5 0
3 years ago
What is the scientific name for the substance that is dissolving in a solution?
Goryan [66]

Answer:

The solute is the substance that is being dissolved,

Explanation:

A solution is a homogeneous mixture consisting of a solute dissolved into a solvent .

4 0
3 years ago
Read 2 more answers
The heat of vaporization of water at 100°c is 40.66 kj/mol. Calculate the quantity of heat that is absorbed/released when 9.00 g
timofeeve [1]

Answer:

20.3 kJ of heat is absorbed when 9.00 g of steam condenses to liquid water.

Explanation:

Heat is being consumed during vaporization and heat is being released during condensation.

To vaporize 1 mol of water, 40.66 kJ of heat is being consumed.

Molar mass of water = 18.02 g/mol

Hence, to vaporize 18.02 g of water , 40.66 kJ of heat is being consumed.

So, to vaporize 9.00 g of water, (\frac{40.66}{18.02}\times 9.00)kJ of heat or 20.3 kJ of heat is being consumed

As condensation is a reverse process of vaporization therefore 20.3 kJ of heat is absorbed when 9.00 g of steam condenses to liquid water.

5 0
3 years ago
What is formed by the hydrolysis of Starch?
Ymorist [56]

Answer:

soluble starch, maltose and various dextrins.

Explanation:

3 0
3 years ago
Other questions:
  • Pls help :(
    6·2 answers
  • Given that one cup = 257.6 mL, calculate the molarity of vitamin C in orange juice.
    13·1 answer
  • In examining several amino acids, you want to identify the feature or features that differentiate one amino acid from another. W
    13·2 answers
  • Which answer choice correctly describes the gas law and physical changes represented by the image?
    6·2 answers
  •  the force of gravity will cause two different masses to
    6·2 answers
  • If 452.36 g of C3H5N3O9 decompose what volume of N2 will be produced
    8·1 answer
  • How many atoms are in 25.00 g of B?
    7·1 answer
  • When does the number of electrons be greater than the number of protons?And give examples.
    14·1 answer
  • When a fast moving particle runs into a slower moving particle<br> what happens ?
    9·1 answer
  • A transfer of energy can result in objects changing direction. True or False
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!