Coffee creamer is a base because if you eat it raw then it will soak up the acid in your stomach.
0.0102 moles Na₂CO₃ = 1.08g of Na₂CO₃ is necessary to reach stoichiometric quantities with cacl2.
<h3>Explanation:</h3>
Based on the reaction
CaCl₂ + Na₂CO₃ → 2NaCl + CaCO₃
1 mole of CaCl₂ reacts per mole of Na₂CO₃
we have to calculate how many moles of CaCl2•2H2O are present in 1.50 g
- We must calculate the moles of CaCl2•2H2O using its molar mass (147.0146g/mol) in order to answer this issue.
- These moles, which are equal to moles of CaCl2 and moles of Na2CO3, are required to obtain stoichiometric amounts.
- Then, we must use the molar mass of Na2CO3 (105.99g/mol) to determine the mass:
<h3>
Moles CaCl₂.2H₂O:</h3>
1.50g * (1mol / 147.0146g) = 0.0102 moles CaCl₂.2H₂O = 0.0102moles CaCl₂
Moles Na₂CO₃:
0.0102 moles Na₂CO₃
Mass Na₂CO₃:
0.0102 moles * (105.99g / mol) = 1.08g of Na₂CO₃ are present
Therefore, we can conclude that 0.0102 moles Na₂CO₃ is necessary.to reach stoichiometric quantities with cacl2.
To learn more about stoichiometric quantities visit:
<h3>
brainly.com/question/28174111</h3>
#SPJ4
Answer:
1.2x10⁻⁵M = Concentration of the product released
Explanation:
Lambert-Beer's law states the absorbance of a solution is directly proportional to its concentration. The equation is:
A = E*b*C
<em>Where A is the absotbance of the solution: 0.216</em>
<em>E is the extinction coefficient = 18000M⁻¹cm⁻¹</em>
<em>b is patelength = 1cm</em>
<em>C is concentration of the solution</em>
<em />
Replacing:
0.216 = 18000M⁻¹cm⁻¹*1cm*C
<h3>1.2x10⁻⁵M = Concentration of the product released</h3>
Answer:
the answer is destructive interference