Answer:
Explanation:
refractive index of ember = sin of angle of incidence / sin of angle of refraction
= sin 35 / sin24
= .5735 / .4067
= 1.41
This is refractive index of ember with respect to water
refractive index of ember with respect to water
= wμe = μe / μw
μe = wμe x μw
= 1.33 x 1.41
= 1.87
refractive index of ember with respect to air = 1.87 .
Ox:vₓ=v₀
x=v₀t
Oy:y=h-gt²/2
|vy|=gt
tgα=|vy|/vₓ=gt/v₀=>t=v₀tgα/g
y=0=>h=gt²/2=v₀²tg²α/2g=>tgα=√(2gh/v₀²)=√(2*10*20/24²)=√(400/576)=0.83=>α=tg⁻¹0.83=39°
cosα=vₓ/v=v₀/v=>v=v₀/cosα=24/cos39°=24/0,77=31.16 m/s
Ec=mv²/2=2*31.16²/2=971.47 J=>Ec≈0.97 kJ
I am not completely sure, but I believe that it depends on the total mass of the Protons and Neutrons
Answer:
650 km/hr
Explanation:
Draw a right triangle from (0.0) (Point A) down 30 degrees and to the right for a length of 750 (Point B). Then draw a line from B up to the x axis to make a right angle (Point C). Use the cosine function to find line AC, the vector portion of AB that lies of the x (East) axis. Cosine(30)= Adjacent/Hypotenuse.
Cos(30) = AC/750
750*(cos(30)) = AC
AC = 649.5 km/hr