Answer:
The mouse runs faster to have the same kinetic energy as the elephant.
Explanation:
Note from the equation given, mass (m) is directly proportional to KE. This means an elephant with more mass will have more KE, therefore, for the mouse to compensate, it has to run faster because its KE is smaller because of its small mass. If both run at the same speed, the elephant would have thousands of times more kinetic energy than the mouse. So the mouse has to run faster so that its speed compansates for its smaller weight.
Kinetic energy = 1/2 * mass * velocity^2
In this case,
KE = 1/2 * 1569 kg * (15 (m/s))^2 = 176,5 kN
Answer:
A) a = 73.304 rad/s²
B) Δθ = 3665.2 rad
Explanation:
A) From Newton's first equation of motion, we can say that;
a = (ω - ω_o)/t. We are given that the centrifuge spins at a maximum rate of 7000rpm.
Let's convert to rad/s = 7000 × 2π/60 = 733.04 rad/s
Thus change in angular velocity = (ω - ω_o) = 733.04 - 0 = 733.04 rad/s
We are given; t = 10 s
Thus;
a = 733.04/10
a = 73.304 rad/s²
B) From Newton's third equation of motion, we can say that;
ω² = ω_o² + 2aΔθ
Where Δθ is angular displacement
Making Δθ the subject;
Δθ = (ω² - ω_o²)/2a
At this point, ω = 0 rad/s while ω_o = 733.04 rad/s
Thus;
Δθ = (0² - 733.04²)/(2 × 73.304)
Δθ = -537347.6416/146.608
Δθ = - 3665.2 rad
We will take the absolute value.
Thus, Δθ = 3665.2 rad
The conduction velocity of an axon is determined by myelin sheath
thickness and internode distance.
Axon are structures in the neuron which is involved in the conduction of
impulses away from the cell body. Axons which have myelin sheath conduct
impulses faster than those without it.
Axons which have thicker myelin sheath and longer internode distance will
increase the conduction velocity of an axon and vice versa.
Read more on brainly.com/question/23488967
Answer:
here
Explanation:
Climate is determined by the temperature and precipitation characteristics of a region over time. The temperature characteristics of a region are influenced by natural factors such as latitude, elevation and the presence of ocean currents.