" There will be a net movement of oxygen from outside the cell to inside the cell " Statement is True.
Explanation:
The partial pressure for oxygen in alveoli is greater under normal circumstances, and oxygen moves neatly into the blood. In addition, the partial carbon dioxide pressure throughout the blood usually is higher, such that carbon dioxide migrate clearly into the alveoli.
The few common molecules which can traverse the cell membrane by absorption (or diffusion of a sort recognized as osmosis) are water, carbon dioxide and oxygen. Metabolism is typically oxygen-needed, which is lowest in the cell within the animal and plant, so that net oxygen flows to the cell.
Answer:
The molar mass of the gas is 44 g/mol
Explanation:
It is possible to solve this problem using Graham's law that says: Rates of effusion are inversely dependent on the square of the mass of each gas. That is:

If rate of effusion of nitrogen is Xdistance / 48s and for the unknown gas is X distance / 60s and mass of nitrogen gas is 28g/mol (N₂):

6,61 = √M₂
44g/mol = M₂
<em>The molar mass of the gas is 44 g/mol</em>
<em></em>
I hope it helps!
Answer:
Please see the attached pictures.
Explanation:
☆ To ensure that each carbon has 4 bonds, fill the other bonds with Hs.
Answer:
NH4)3PO4
this is a filler: jsjdkflflflsojsskksdnfkdod