The question is incomplete, the complete question is;
In the 1800s, a popular belief known as vitalism stated that life processes could not be explained by the laws of physics and chemistry,and were instead dictated by an independent life force. Which discovery most likely caused scientists to revise this hypothesis regarding the origin of life on Earth?
a. that inorganic compounds existed within live organisms
b. that organic compounds could be synthesized in a laboratory
c. that RNA could serve as a template to synthesize DNA
d. that self-replicating molecules existed inside cells
Answer:
b. that organic compounds could be synthesized in a laboratory
Explanation:
Vitalism is the belief that "living organisms are fundamentally different from non-living entities because they contain some non-physical element or are governed by different principles than are inanimate things"(wikipedia).
This theory held that the molecules involved in life processes could not be synthesized in the laboratory.
All these were upturned after Fredrich Whöler's synthesis of urea in 1828. He was able to show that molecules involved in life process can also be synthesized in the laboratory. This gave rise to modern synthetic organic chemistry.
Answer:
hola no ablo inalgun moderador puede acabar a este otro este me borró respuesta que no debió borrar
(2) a base because they accept H+ ions. NH3 is the conjugate base of NH4+.
Answer:
Dark matter makes up 85% of the mass of the universe. Dark matter is not directly observable because it doesn't interact with any electromagnetic wave. In the development of the universe, without dark matter, the universe will not function, move or rotate as it does now (this speculation led to the quest to find the anomaly of mass and energy in the known universe, eventually leading to the idealization of dark matter) and will not have enough gravitational force to hold it together. After the big bang,<em> the presence of dark matter and energy ensured that the newly formed universe didn't just float away, rather, it provided enough gravitational force to hold the universe while still allowing it to expand sufficiently</em>.
The development of the universe would have been different without the universe in the sense that the young universe won't have enough mass to hold it together, and the universe would have simply floated apart. The behavior of the universe would have been different from what we observe now, and some physical laws that applies now will not apply to the universe.