Find the moles of CaO
divide mass (2.0g) by the RFM which is 56 (Ca is 40 add that to O which is 16 making 56) this gives 0.0356 moles.
Find the theoretical mass by multiplying the moles of CaO (which is 0.0356 as there are no balancing number making the ratio 1:1) by the RFM of Ca(OH)2 which is 74 (40+16+16+1+1)
74 (Ca(OH)2 RFM) x 0.0357 (CaO moles) = 2.6g which is the theoretical mass of Ca(OH)2
Find percentage yield by dividing the actual mass of Ca(OH)2 by the theoretical and then x100 this Should give you 82.3%
D because as the soda can starts to cool off the ice in turn begins to melt because the heat from the soda is being distributed on the ice and vice versa.
<span>HCl is a strong acid and NaOH is a strong base, so mixing them together will produce a lot of heat. The products are salt or Sodium chloride (NaCl) and water (H2O). Since one is an acid and one is a base they will neutralize each other. I hope this helps</span>
Answer:
2.5 × 10⁻⁵ M H₃O⁺ and 4.0 × 10⁻¹⁰ M OH⁻.
Explanation:
<em>∵ pH = - log[H₃O⁺]</em>
∴ 4.6 = - log[H₃O⁺].
∴ log[H₃O⁺] = - 4.6.
∴ [H₃O⁺] = 2.51 x 10⁻⁵.
∵ [H₃O⁺][OH⁻] = 10⁻¹⁴.
[H₃O⁺] = 2.51 x 10⁻⁵ M.
∴ [OH⁻] = 10⁻¹⁴/[H₃O⁺] = 10⁻¹⁴/(2.51 x 10⁻⁵ M) = 3.98 × 10⁻¹⁰ M ≅ 4.0 × 10⁻¹⁰ M.
<em>So, the right choice is: 2.5 × 10⁻⁵ M H₃O⁺ and 4.0 × 10⁻¹⁰ M OH⁻.</em>
Mostly about what it can do with its trunk! also about how strong it is or evan how long! love to help!
contact me if you need more info
-luna