Answer:
Explanation:
An atom is said to be electrically neutral, if the said atom contains equal or the same numbers of protons and electrons.
Worthy of note is that most bodies are normally close to being electrically neutral. This is because of the number of electrons on the body being equal to the number of protons on the same body. Charging a body means one would have to transfer electric charge to the body, or from the body. As a result, the number of electrons in the body will no longer be equal to the number of protons on the body.
Answer:

Explanation:
One mole of a substance contains the same amount of representative particles. These particles can be atoms, molecules, ions, or formula units. In this case, the particles are atoms of titanium.
Regardless of the particles, there will always be <u>6.02*10²³</u> (also known as Avogadro's Number) particles in one mole of a substance.
Therefore, the best answer for 1 mole of titanium is D. 6.02*10²³ atoms.
The answer is 125 Joules
The first thing to take note of is the work equation: W=F×D
Since we already have our force and our distance that will help make this problem easier.
So, W=25*5
W=125
Therefore, our answer is 125 Joules since work is measured in joules
Hope this helped!! :)
I believe that the statement above is TRUE. I can say that it's true because based on the definition of what reciprocal liking is, this is the probability of having to like someone who also likes them in return. Therefore, if they like each other, this means that there is a low risk of rejection in the relationship.
Answer:
the angle of reflection equals the angle of incidence—θr = θi. The angles are measured relative to the perpendicular to the surface at the point where the ray strikes the surface.
Explanation:
A microscope uses a mirror to reflect light to the specimen under the microscope. ... An astronomical reflecting telescope uses a large parabolic mirror to gather dim light from distant stars. A plane mirror is used to reflect the image to the eyepiece.