Answer:
the period of the 16 m pendulum is twice the period of the 4 m pendulum
Explanation:
Recall that the period (T) of a pendulum of length (L) is defined as:

where "g" is the local acceleration of gravity.
SInce both pendulums are at the same place, "g" is the same for both, and when we compare the two periods, we get:

therefore the period of the 16 m pendulum is twice the period of the 4 m pendulum.
Answer:
Explanation:
Given
Volume of bucket 
Time taken to fill the bucket 
so volume flow rate is 
1 gal is equivalent to 

mass flow rate 


(b)Average velocity through nozzle exit



As this happens over twelve seconds, you would take the total difference in velocities and divide it by twelve to find the change per second
44.0 m/s - 2.0 m/s = 42.0 m/s
42.0 m/s / 12 s = 3.5 m/s2
the acceleration of the rock would be 3.5 m/s2
Answer:
Closely fits into the connector.
Explanation:
It's one of the steps used for the splicing of aluminium conductors in the underground connections. Where we do the strip insulation to splice the conductors by using compression type connectors.
The watt is a rate, similar to something like speed (miles per hour) and other time-interval related measurements.
Specifically, watt means Joules per Second. We are given that the electrical engine has 400 watts, meaning it can make 400 joules per second. If we need 300 kJ, or 3000 Joules, then we can write an equation to solve the time it would take to reach this amount of joules:
w * t = E
w: Watts
t: Time
E: Energy required
(Watts times time is equal to the energy required)
<u>Input our values:</u>
400 * t = 3000
(We need to write 3000 joules instead of 300 kilojoules, since Watts is in joules per second. It's important to make sure your units are consistent in your equations)
<u>Divide both sides by 400 to isolate t:</u>
<u />
= 
t = 7.5 (s)
<u>It will take 7.5 seconds for the 400 W engine to produce 300 kJ of work.</u>
<u></u>
If you have any questions on how I got to the answer, just ask!
- breezyツ