Being the planet closest to the sun, Mercury must be the one
with the shortest year. That's how gravity works.
By definition,
q = 1.22y/D
Where,
q = min. angle
y = wavelength
D = Aperture diameter = diameter of the antenna
At distance "x" from the antenna,
L =xq = 1.22xy/D
Where, L = Min. distance
But, y =c/f = (3*10^8)/(16*10^9) = 0.01875 m
Substituting;
L = 1.22*5*10^3*0.01875/2.1 = 54.46 m
Answer:
Lithification is the answer.
780 seconds, or 13 minutes.
In the future, please use proper capitalization. There's a significant difference in the meaning between mV and MV. One of them indicated millivolts while the other indicates megavolts. For this problem, I'll make the following assumptions about the values presented. They are:
Total energy = 1.4x10^11 Joules (J)
Current per flash = 30 Columbs (C)
Potential difference = 30 Mega Volts (MV)
First, let's determine the power discharged by each bolt. That would be the current multiplied by the voltage, so
30 C * 30x10^6 V = 9x10^8 CV = 9x10^8 J
Now that we know how many joules are dissipated per flash, let's determine how flashes are needed.
1.4x10^11 / 9x10^8 = 1.56E+02 = 156
Since each flash takes 5 seconds, that means that it will take about 5 * 156 = 780 seconds which is about 780/60 = 13 minutes.