Answer:
760 mm of Hg
Explanation:
If the gases A , B and C are non reacting , then according to <u>Dalton's </u><u>Law </u><u>of</u><u> </u><u>Partial </u><u>Pressure</u> the total pressure exerted is equal to sum of individual partial pressure of the gases .
If there are n , number of gases then ,
Here ,
- Partial pressure of Gas A = 400mm of Hg
- Partial pressure of Gas B = 220 mm of Hg
- Partial pressure of Gas C = 140mm of Hg
Hence the total pressure exerted is ,
Substitute ,

Add ,

<u>Hence</u><u> the</u><u> </u><u>total</u><u> pressure</u><u> exerted</u><u> by</u><u> the</u><u> </u><u>gases </u><u>is </u><u>7</u><u>6</u><u>0</u><u> </u><u>mm </u><u>of </u><u>Hg</u><u>.</u>
<em>I </em><em>hope</em><em> this</em><em> helps</em><em>.</em>
So here we are given that the the velocity of the proton ( V ) is 2.0 ×
meters / second, with a magnetic field of strength 5.5 ×
tesla. If they each form a right angle, they are hence perpendicular to one another, such that ....
F = q( V × B ),
F = q v B( sin ∅ ),
F = q v B( sin( 90 ) )
.... they form the following formula. Let's go through each of the variables in our formula here -
{ F = Magnetic Force ( which has to be calculated ), q = charge of proton (has charge of 1.602 ×
coulombs ), B = magnetic field }
All we have to do now is plug and chug,
F = ( 1.602 ×
)( 2.0 ×
)( 5.5 ×
) = ( About ) 1.8 ×
Newtons
Answer:
The answer will be :
In year 1869
Russian scientist named Dmitri Mendeleev
Chart called Mendeeleves periodic table
increasing atomic masses
physical and chemical properties.
Hope this Helps
Best of luck !!
We can write the balanced equation for the synthesis reaction as
H2(g) + Cl2(g) → 2HCl(g)
We use the molar masses of hydrogen chloride gas HCl and hydrogen gas H2 to calculate for the mass of hydrogen gas H2 needed:
mass of H2 = 146.4 g HCl *(1 mol HCl / 36.46 g HCl) * (1 mol H2 / 2 mol HCl) *
(2.02 g H2 / 1 mol H2)
= 4.056 g H2
We also use the molar masses of hydrogen chloride gas HCl and chlorine gas CL2 to calculate for the mass of hydrogen gas H2:
mass of CL2 = 146.4 g HCl *(1 mol HCl / 36.46 g HCl) * (1 mol Cl2 / 2 mol HCl) *
(70.91 g Cl2 / 1 mol Cl2)
= 142.4 g Cl2
Therefore, we need 4.056 grams of hydrogen gas and 142.4 grams of chlorine gas to produce 146.4 grams of hydrogen chloride gas.
A chemical bond is a lasting attraction between atoms, ions or molecules that enables the formation of chemical compounds. The bond may result from the electrostatic force of attraction between oppositely charged ions as in ionic bonds or through the sharing of electrons as in covalent bonds.