Answer:
Explanation:
When we accelerate in a car on a straight path we tend to lean backward because our lower body part which is directly in contact with the seat of the car gets accelerated along with it but the upper the upper body experiences this force later on due to its own inertia. This force is accordance with Newton's second law of motion and is proportional to the rate of change of momentum of the upper body part.
Conversely we lean forward while the speed decreases and the same phenomenon happens in the opposite direction.
While changing direction in car the upper body remains in its position due to inertia but the lower body being firmly in contact with the car gets along in the direction of the car, seems that it makes the upper body lean in the opposite direction of the turn.
On abrupt change in the state of motion the force experienced is also intense in accordance with the Newton's second law of motion.
Answer:
B) 
Explanation:
The electric force between charges can be determined by;
F = 
Where: F is the force, k is the Coulomb's constant,
is the value of the first charge,
is the value of the second charge, r is the distance between the centers of the charges.
Let the original charge be represented by q, so that;
= 2q
= 
So that,
F = 
x 
= 2q x
x 
=
x 
=
x 
F =
x 
The electric force between the given charges would change by
.
Explanation:
Mass of bumper cars, 
Initial speed of car A, 
Initial speed of car Z, 
Final speed of car A after the collision, 
We need to find the velocity of car Z after the collision. Let it is equal to
. Using the conservation of momentum as :




So, the velocity of car Z after the collision is (-12 m/s). Hence, this is the required solution.
Answer:
true?
Explanation:
Im positive but not 100% sure wait for someone else to answer and see if they say the same.
The water creates less friction between your foot and the ground