If a coin is dropped at a relatively low altitude, it's acceleration remains constant. However, if the coin is dropped at a very high altitude, air resistance will have a significant effect. The initial acceleration of the coin will be the greatest. As it falls down, air resistance will counteract the weight of the coin. So, the acceleration will decrease. Although the acceleration decreases, the coin still accelerates, that is why it falls faster. When the air resistance fully counters the weight of the coin, the acceleration will become zero and the coin will fall at a constant speed (terminal velocity). So, the answer should be, The acceleration decreases until it reaches 0. The closest answer is.
a. The acceleration decreases.
Answer:
about 2.7liters for women and 3.7liters for men
Explanation:
1.8 is the mechanical advantage of the lever.
<h3>Definition of mechanical advantage</h3>
The theoretical mechanical advantage of a system is the ratio of the force that performs the useful work to the force applied, assuming there is no friction in the system.
The advantage gained by the use of a mechanism in transmitting force specifically the ratio of the force that performs the useful work of a machine to the force that is applied to the machine.
Mechanical advantage is given by the ratio of the load lifted to the force applied to lift the load.
In this case, Mechanical advantage=L/E where L is the load and E is the effort applied.
Mechanical advantage= 90/50 =1.8
Question-you use a lever to lift a heavy tree branch. you apply a force of 50 n and the lever lifts the branch with a force of 90 n. what is the mechanical advantage of the lever?
To learn more about the Mechanical advantage visit the link
brainly.com/question/16617083
#SPJ4
Answer:
6 Minutes 40 Seconds or 400 Seconds
Explanation:
Time to cover a distance of 5m = 1 Second
Time to cover a distance of 2000m = 2000÷5
= 400 Seconds
After converting 400 Seconds into minutes it will become 6 minutes 40 seconds.
Those who found this helpful please give me a Thanks to support me. So, I can explain other questions more clearly. If you don't want to mark me Brainliest don't mark. But, please give me a Thanks.
Light that enters the new medium <em>perpendicular to the surface</em> keeps sailing straight through the new medium unrefracted (in the same direction).
Perpendicular to the surface is the "normal" to the surface. So the angle of incidence (angle between the laser and the normal) is zero, and the law of refraction (just like the law of reflection) predicts an angle of zero between the normal and the refracted (or the reflected) beam.
Moral of the story: If you want your laser to keep going in the same direction after it enters the water, or to bounce back in the same direction it came from when it hits the mirror, then shoot it <em>straight on</em> to the surface, perpendicular to it.