Answer:
31.9 °C
Explanation:
The formula for the heat q absorbed by an object is
q = mCΔT where ΔT = (T₂ - T₁)
Data:
q = 12.35 cal
m = 19.75 g
C = 0.125 cal°C⁻¹g⁻¹
T₂ = 37.0 °C
Calculations
(a) Calculate ΔT
q = mCΔT
12.35 cal = 19.25 g × 0.125 cal°C⁻¹g⁻¹ × ΔT
12.35 = 2.406ΔT °C⁻¹
ΔT = 12.35/(2.406 °C⁻¹) = 5.13 °C
(b) Calculate T₂
ΔT = T₂ - T₁
T₁ = T₂ - ΔT = 37.0 °C - 5.13 °C = 31.9 °C
The original temperature was 31.9 °C.
Answer : The formal charge on the C is, (-1) charge.
Explanation :
Lewis-dot structure : It shows the bonding between the atoms of a molecule and it also shows the unpaired electrons present in the molecule.
In the Lewis-dot structure the valance electrons are shown by 'dot'.
The given molecule is, 
As we know that carbon has '4' valence electrons and hydrogen has '1' valence electron.
Therefore, the total number of valence electrons in
= 4 + 3(1) + 1 = 8
According to Lewis-dot structure, there are 6 number of bonding electrons and 2 number of non-bonding electrons.
Now we have to determine the formal charge on carbon atom.
Formula for formal charge :


The formal charge on the C is, (-1) charge.
The new volume when pressure increases to 2,030 kPa is 0.8L
BOYLE'S LAW:
The new volume of a gas can be calculated using Boyle's law equation:
P1V1 = P2V2
Where;
- P1 = initial pressure (kPa)
- P2 = final pressure (kPa)
- V1 = initial volume (L)
- V2 = final volume (L)
According to this question, a 4.0 L balloon has a pressure of 406 kPa. When the pressure increases to 2,030 kPa, the volume is calculated as:
406 × 4 = 2030 × V2
1624 = 2030V2
V2 = 1624 ÷ 2030
V2 = 0.8L
Therefore, the new volume when pressure increases to 2,030 kPa is 0.8L.
Learn more about Boyle's law calculations at: brainly.com/question/1437490?referrer=searchResults