Answer:
The ΔH of the reaction is + 12.45 KJ/mol
Explanation:
Mass of water= 100ml = 100g. (You should always assume 1cm3 of water as 1g)
heat capacity of water = 4.18 Jk-1 Mol-1
Change in temperature = (19.86 - 25.00) = -5.14 K (This is an endothermic reaction because of the fall in temperature)
Molar mass of NaHCO3 = 84 g/mol
Mole of NaHCO3 = 14.5 / 84 = 0.173 mol
Step 1 : Calculate the heat energy (Q) lost by the water.
Q = M x C x ΔT
Q = -100 x 4.18 x (-5.14)
Q = 2148.5 joules
Q = 2.1485 K J
Step 2: Calculating the ΔH of the reaction?
ΔH = Q / number of moles of NaHCO3
ΔH = 2.1485 / 0.173
ΔH = 12.42 KJ/mol
The answer would be true because it is not possible for aspirin to have only one compound if it does many things.
Okay so molar mass is given, no. of moles is given and we have to calculate the weight or mass of the compound in gram.
the formula we will use here is= n=W/M
where n is no. of moles ,w is weight in gram which we have to find and M is molar mass or formula weight which is given.
so W=n x M
use this formula you'll get the answer
The order of the solutions from lowest to highest concentration : A, B, C
<h3>Further explanation</h3>
Given
the following solutions
Required
order of increasing concentration
Solution
Molarity shows the number of moles of solute in every 1 liter of solution.

Solution A : 0.5 moles : 2 L solution = 0.25 M
Solution B : 1 moles : 3 L solution = 0.33 M
Solution C : 1.5 moles : 4 L solution = 0.375 M