Answer:
b) 68,9 km/h a) picture
Explanation:
In this problem, since velocity is expressed in km/h and time in minutes, we have to convert either time to hours or velocity to km/min. It is easier to use hours.
Using this formula we pass time to hours:

Now we can plot speed vs time (image 1). The problem says that the driver uses constant speed, so all lines have to be horizontal.
Using the values of the speed we calculate the distance in each interval

Using these values and the fact that she was having lunch in the third one (therefore stayed in the same position), we plot position vs time, using initial position zero (image 2, distance is in km, not meters).
Finally, we compute the average speed with the distance over time:

To solve this problem it is necessary to apply the concepts related to Normal Force, frictional force, kinematic equations of motion and Newton's second law.
From the kinematic equations of motion we know that the relationship of acceleration, velocity and distance is given by

Where,
Final velocity
Initial Velocity
a = Acceleration
x = Displacement
Acceleration can be expressed in terms of the drag coefficient by means of
Frictional Force
Force by Newton's second Law
Where,
m = mass
a= acceleration
Kinetic frictional coefficient
g = Gravity
Equating both equation we have that



Therefore,


Re-arrange to find x,

The distance traveled by the car depends on the coefficient of kinetic friction, acceleration due to gravity and initial velocity, therefore the three cars will stop at the same distance.
Answer:
7.55 km/s
Explanation:
The force of gravity between the Earth and the Hubble Telescope corresponds to the centripetal force that keeps the telescope in uniform circular motion around the Earth:

where
is the gravitational constant
is the mass of the telescope
is the mass of the Earth
is the distance between the telescope and the Earth's centre (given by the sum of the Earth's radius, r, and the telescope altitude, h)
v = ? is the orbital velocity of the Hubble telescope
Re-arranging the equation and substituting numbers, we find the orbital velocity:
