Answer:
(a) 42 N
(b)36.7 N
Explanation:
Nomenclature
F= force test line (N)
W : fish weight (N)
Problem development
(a) Calculating of weight of the heaviest fish that can be pulled up vertically, when the line is reeled in at constant speed
We apply Newton's first law of equlibrio because the system moves at constant speed:
∑Fy =0
F-W= 0
42N -W =0
W = 42N
(b) Calculating of weight of the heaviest fish that can be pulled up vertically, when the line is reeled with an acceleration whose magnitude is 1.41 m/s²
We apply Newton's second law because the system moves at constant acceleration:
m= W/g , m= W/9.8 , m:fish mass , W: fish weight g:acceleration due to gravity
∑Fy =m*a
m= W/g , m= W/9.8 , m:fish mass , W: fish weight g:acceleration due to gravity
F-W= ( W/9.8 )*a
42-W= ( W/9.8 )*1.41
42= W+0.1439W
42=1.1439W
W= 42/1.1439
W= 36.7 N
<span>Weight of the skydiver m = 500 N
Terminal velocity V = 90 km/h
Here the weight of the person acts as the force, so based on the Newton's third law the applied is the force what we but in the opposite direction making the resistance. So the air resistance exerted on Suzie will be her weight that is 500N</span>
hola ya sabes la respuesta si si ,me la dices porfa
Answer:
a. t = 1.43 s
b. d = 7.88 m
Explanation:
a. The time of flight can be found using the following equation:

Where:
: is the final height = -10 m
: is the initial height = 0
: is the initial speed in the vertical direction = 0
g: is the acceleration due to gravity = 9.81 m/s²
By solving the above equation for "t" we have:

Hence, the ball will hit the ground in 1.43 s.
b. The distance in the horizontal direction can be found as follows:

Where:
x₀: is the initial position in the horizontal direction = 0
a: is the acceleration in the horizontal direction = 0 (it is moving at constant speed)

Therefore, the ball will travel 7.88 m before it hits the ground.
I hope it helps you!
Answer:
5 ohms
Explanation:
Given:
EMF of the ideal battery (E) = 60 V
Voltage across the terminals of the battery (V) = 40 V
Current across the terminals (I) = 4 A
Let the internal resistance be 'r'.
Now, we know that, the voltage drop in the battery is given as:
Therefore, the voltage across the terminals of the battery is given as:

Now, rewriting in terms of 'r', we get:

Plug in the given values and solve for 'r'. This gives,

Therefore, the internal resistance of the battery is 5 ohms.