Answer:
Explanation:
We know that the volume V for a sphere of radius r is

If we got an uncertainty
the formula for the uncertainty of V is:

We can calculate this uncertainty, first we obtain the derivative:


And using it in the formula:



The relative uncertainty is:



Using the values for the problem:

This is, a percent uncertainty of 4.77 %
Acceleration = (change in speed) / (time for the change)
change in speed = (speed at the end) - (speed at the beginning)
change in speed = (37 km/hr) - (89 km/hr) = -52 km/hr
Acceleration = (-52 km/hr) / (6 sec)
Acceleration = (-26/3) km/(hr·sec)
Units: (1/hr·sec) · (hr/3600 sec) = 1 / 3600 sec²
(-26/3) km/(hr·sec) = (-26/3) km/(3600 sec²)
= -26,000/(3 · 3600) m/s²
<em>Acceleration = -2.41 m/s²</em>
Look out below ! You should step nimbly to one side, to avoid being hit by one or the other of those hazardous weight objects when they arrive (at the same time).
Answer:
2.86×10⁻¹⁸ seconds
Explanation:
Applying,
P = VI................ Equation 1
Where P = Power, V = Voltage, I = Current.
make I the subject of the equation
I = P/V................ Equation 2
From the question,
Given: P = 0.414 W, V = 1.50 V
Substitute into equation 2
I = 0.414/1.50
I = 0.276 A
Also,
Q = It............... Equation 3
Where Q = amount of charge, t = time
make t the subject of the equation
t = Q/I.................. Equation 4
From the question,
4.931020 electrons has a charge of (4.931020×1.6020×10⁻¹⁹) coulombs
Q = 7.899×10⁻¹⁹ C
Substitute these value into equation 4
t = 7.899×10⁻¹⁹/0.276
t = 2.86×10⁻¹⁸ seconds