Answer: The initial temperature of the iron was 
Explanation:

As we know that,

.................(1)
where,
q = heat absorbed or released
= mass of iron = 360 g
= mass of water = 750 g
= final temperature = 
= temperature of iron = ?
= temperature of water = 
= specific heat of iron = 
= specific heat of water= 
Now put all the given values in equation (1), we get
![-360\times 0.450\times (46.7-x)=[750\times 4.184\times (46.7-22.5)]](https://tex.z-dn.net/?f=-360%5Ctimes%200.450%5Ctimes%20%2846.7-x%29%3D%5B750%5Ctimes%204.184%5Ctimes%20%2846.7-22.5%29%5D)

Therefore, the initial temperature of the iron was 
Answer:- 4.36 kPa
Solution:- At constant volume, the pressure of the gas is directly proportional to the kelvin temperature.

Where the subscripts 1 and 2 are representing initial and final quantities.
From given data:
= 1.049 kPa
= ?
= 7.39 K
= 30.70 K
For final pressure, the equation could also be rearranged as:

Let's plug in the values in it:

= 4.36 kPa
So, the new pressure of the gas is 4.36 kPa.
W(Cl)=0.3877
w(O)=0.6123
M(Cl)=35.5 g/mol
M(O)=16.0 g/mol
ClₐOₓ
M(ClₐOₓ)=35.5a+16.0x
w(Cl)=35.5a/(35.5a+16.0x)
w(O)=16.0x/(35.5a+16.0x)
solve a system of two equations with two unknowns
35.5a/(35.5a+16.0x)=0.3877
16.0x/(35.5a+16.0x)=0.6123
a=2
x=7
Cl₂O₇ is the empirical formula
<u>Answer:</u> The mass of iron (II) oxide that contains a million iron atoms is 
<u>Explanation:</u>
We are given:
Number of iron atoms = A million = 
The chemical formula of the given compound is 
It is formed by the combination of 2 iron atoms and 3 oxygen atoms.
According to mole concept:
1 mole of a compound contains
number of particles
1 mole of iron (II) oxide will contain =
number of iron atoms
We know that:
Molar mass of iron (II) oxide = 159.7 g/mol
Applying unitary method:
For
number of iron atoms, the mass of iron (II) oxide is 159.7 g
So, for
number of iron atoms, the mass of iron (II) oxide will be 
Hence, the mass of iron (II) oxide that contains a million iron atoms is 
Answer:
A. 3
Explanation:
There is half as many moles of CO₂ as of O₂. Half of 6 is 3. The equation is:
