Answer : D. Gravitational Potential
Gravitational Potential energy =mgh
Answer:
option (a) 0.61 s
Explanation:
Given;
Time taken by the ball to reach the ground = 0.50 s
Let us first calculate the distance through which the ball falls on the ground
from the Newton's equation of motion, we have

where,
s is the distance
a is the acceleration
t is the time
here it is the case of free fall
thus, a = g = acceleration due to gravity
u = initial speed of the ball = 0
on substituting the values, we get

or
s = 1.225 m
Now,
when the elevator is moving up with speed of 1.0 m/s
the initial speed of the ball = -1.0 m/s (as the elevator is moving in upward direction)
thus , we have

or

or
4.9t^2 - t - 1.225 = 0
or
t = 0.612 s
hence, the correct answer is option (a) 0.61 s
The formula for the voltage is shown below:
Voltage = Current x Resistance
V=I x R
When we change voltage:
I =V/R or R=V/I
Increasing the voltage in an electrical circuit will also increase the current value, as well as the resistance of the load,
Answer: 4.74 mm
Explanation:
We can solve this problem with the following equation:
(1)
Where:
is the Young modulus for femur
is the stress (force
applied per unit of transversal area
) on the femur
Being:
the compression the femur can withstand before breaking
is the length of the femur without compression
Writing the data in equation (1):
(2)
(3)
Isolating
:
(4)
(5) This is the compression in meters
Converting this result to millimeters:

Organic materials continue to be the largest component of MSW. Paper and paperboard account for 27 percent and yard trimmings and food account for another 28 percent. Plastics comprise about 13 percent; metals make up 9 percent; and rubber, leather, and textiles account for 9 percent.