1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zmey [24]
3 years ago
14

If you have two linear polarizers whose extinction axis are 90 degrees relative to eachother, no light passes through the system

.
Where can you put a third polarizer to allow light to pass through the system and what angle should it be at in order to allow the maximum amount of light to be transmitted?
Physics
1 answer:
marin [14]3 years ago
8 0

Answer:

The third polarizer can be placed midway between the first two polarizers with its extinction axis at 45° from either polarizer to maximize the amount of light that is transmitted (one-eight).

Explanation:

If light is incident on a polarizer, it allows only light that is parallel to its 'pass-through' axis to pass through untouched.

Light whose electric direction/vector is perpendicular to the 'pass through' axis will not pass through at all. Light whose electric direction/vector points in other directions (apart from those whose direction is parallel or perpendicular) passes through according to the magnitude of the component that is parallel to the 'pass-through' axis.

The polarizer blocks half of the incident light rays and the transmitted light is polarized in the direction of the 'pass-through' axis.

A new polarizer now place at a distance from the first polarizer with its 'pass-through' axis perpendicular to the first polarizer cancel out all the light that comes through from the first polarizer. Since the light electric vector needs to be parallel to the axis of the polarizer to pass through and all the parallelized light from the first polarizer are now incident perpendicularly to the axis of the second polarizer, no light rays pass through.

But, a third polarizer can be placed midway between the first two polarizers with its axis positioned at 45° from either polarizer. Thereby allowing exactly half of the light from the first polarizer to pass through. The explanation is just like that for the first one. (Light whose electric direction/vector points in other directions (apart from those whose direction is parallel or perpendicular) passes through according to the magnitude of the component that is parallel to the 'pass-through' axis).

Then the resultant from the middle polarizer reaches the initial second polarizer and half of the light is let through again. So that, at the end of the day, (1/2) × (1/2) × (1/2) of the initial incident ray is let through.

That is, to maximize the amount of light that is transmitted (one-eight of initial incident ray) the third Polaroid is place midway between the first two and at angle 45° to either one.

You might be interested in
Similarity between mass and charge
IrinaK [193]
I think there is only one.
<span>
</span>Both are conserved<span>.</span>

5 0
3 years ago
What is the relationship between atmospheric pressure and the density of gas particles in an area of increasing pressure
mezya [45]

Answer:

this is a no brainer

Explanation:

As air pressure in an area increases, the density of the gas particles in that area increases.

8 0
3 years ago
A physics professor demonstrates the Doppler effect by tying a 600 Hz sound generator to a 1.0-m-long rope and whirling it aroun
cluponka [151]

Answer:Highest frequency  =618.89Hz

Lowest frequency=582.22Hz

Explanation:

 The linear velocity of a sound generator  is related to angular velocity and is given as

Vs = rω  where

r = the radius of circular path = 1.0 m

ω is the angular velocity of the sound generator. = 100 rpm

1 rev/min = 0.10472 rad/s

100rpm =10.472 rad/ s

Vs = rω

= 1m x 10.472rad/ s=  10.472m/s

A) Highest frequency  heard by a student in the classroom = Maximum frequency. Using the Doppler effect formulae,

f max = (v/ v-vs) fs

Where , v is the speed of the sound in air at 20 degrees celcius =

343 metres per second

vs is the linear velocity of the sound generator=10.472m/s

fs is the frequency of the sound generator= 600 Hz

f max = (343/ 343 - 10.472) x 600

=343/332.528) x600

=618.89Hz

B) Lowest frequency  heard by a student in the classroom = Minimum frequency

f min = (v/ v+vs) fs

(343/ 343 + 10.472) x 600

=343/353.472) x 600

=582.22hz

5 0
3 years ago
PlZ help !!<br>plz answer correctly!<br>will give the brainliest!!​
sweet-ann [11.9K]

Answer:

Explanation:

I-V graph always represent a straight line

4 0
3 years ago
Read 2 more answers
Please need help on this not too sure on this
n200080 [17]

Answer:

the last one

Explanation:

Because it is a magnifying glass, it magnifies the object and makes it bigger than it appears

3 0
3 years ago
Read 2 more answers
Other questions:
  • How old is a bone that has 12.5 percent of the original amount of radioactive carbon
    5·1 answer
  • What is the purpose of a valve?
    14·2 answers
  • A 0.450-kg hockey puck, moving east with a speed of 5.80 m/s, has a head-on collision with a 0.900-kg puck initially at rest. As
    13·1 answer
  • One sees an emission spectrum from a neon sign <br> True<br><br> False<br> 50 points
    6·1 answer
  • An athlete whose mass is 97.0 kg kg is performing weight-lifting exercises. Starting from the rest position, he lifts, with cons
    14·1 answer
  • Vestobular receptors enable one to balance. <br><br> True or False
    14·2 answers
  • Three negative point charges q1 =-5 nC, q2 = -2 nC and q3 = -5 nC lie along a vertical line. The charge q2 lies exactly between
    8·1 answer
  • Which of the following can happen to solar energy after it enters the earths atmosphere?
    6·2 answers
  • What is a gamma ray?
    9·2 answers
  • In electronic circuits:______.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!