The expression for the block's centripetal acceleration is derived as ω²r or v²/r.
<h3>
What is centripetal acceleration?</h3>
The centripetal acceleration of an object is the inward or radial acceleration of an object moving in a circular path.
The expression for the block's centripetal acceleration is derived as follows;
ω = dθ/dt
where;
- ω is the angular speed
- θ is the angular displacement
- t is the time of motion
ac = ω²r
where;
- r is the radius of the circular path
Also, ω = v/r
ac = (v/r)²r
ac = v²/r
Thus, the expression for the block's centripetal acceleration is derived as ω²r or v²/r.
Learn more about centripetal acceleration here: brainly.com/question/79801
Given what we know, we can confirm that doubling the distance between you and a source of radiation decreases your exposure by 75%.
<h3>How is distance related to radiation exposure?</h3>
- As expected, increasing the distance from the source of the radiation will reduce its negative effects.
- Counter-intuitively however, doubling the distance does not reduce by half, but rather reduces its effects by 3/4th.
- This is due to the fact that the radiation effects from the source are inversely proportional to the square of the distance.
- This causes the changes to be far greater than expected.
Therefore, given that the radiation is proportional to the square of the distance, instead of being of a more direct relation, we can confirm that when doubling the distance between yourself and the source of the radiation, you can reduce its effects by 3/4 or 75%.
To learn more about radiation visit:
brainly.com/question/9815840?referrer=searchResults
Answer:
30.22°.
Explanation:
Given that
height of the bridge ,h= 12 ft
The distance of the lake from bridge ,L= 7 m
Lets take angle = θ
Now by using diagram
We can say that




That is why the angle will be 30.22°.
Given the particle's acceleration is

with initial velocity

and starting at the origin, so that

you can compute the velocity and position functions by applying the fundamental theorem of calculus:


We have
• velocity at time <em>t</em> :

• position at time <em>t</em> :

(1) directed to the right
Explanation:
To the right of B, u(x) is a decreasing function & so its derivative is negative,this implies that the x component of the force on a particle at this position is positive,or that the force is directed towards right .Small deviations from equilibrium at point B causes a force to accelerate the particle away ,hence particle is in <u>unstable equilibrium.</u>