Answer:
V₂ = 116126.75 cm³
Explanation:
Given data:
Radius of balloon = 15 cm
Initial pressure = 2 atm
Initial temperature = 35 °C (35 +273 = 308K)
Final temperature = -20°C (-20+273 = 253 K)
Final pressure = 0.3 atm
Final volume = ?
Formula:
P₁V₁/T₁ = P₂V₂/T₂
P₁ = Initial pressure
V₁ = Initial volume
T₁ = Initial temperature
P₂ = Final pressure
V₂ = Final volume
T₂ = Final temperature
Solution:
Initial volume of balloon:
V = 4/3πr³
V = 4/3×22/7×(15cm)³
V = 14137.17 cm³
V₂ = P₁V₁ T₂/ T₁ P₂
V₂ = 2 atm × 14137.17 cm³ × 253 K / 308 K × 0.3 atm
V₂ = 7153408.02 atm .cm³. K / 61.6 K.atm
V₂ = 116126.75 cm³
Explanation:
Magnesium reacts with dilute hydrochloric acid in a conical flask which is connected to an inverted measuring cylinder in a trough of water. The volume of hydrogen gas produced is measured over a few minutes, and the results are used to plot a graph
This is intended as a class practical. It is best if the students work in pairs because setting up and starting the experiment requires more than one pair of hands. One student can add the magnesium ribbon to the acid and stopper the flask, while the other starts the stopclock. During the experiment, one student can take the readings while the other records them. The experiment itself takes only a few minutes. But allow at least 30 minutes to give students time to set up, take readings and draw graph.
please mark as brainliest
The pressure is directly proportional to temperature (when the pressure decrease the temperature decrease too). Because the air parcel expands so the molecules will not interact with each other as much.
The energy of the particles does not change but the fact that the particles are more spaced out means the parcel is cooler.
so now, the warmer a parcel of air the more water vapor it can hold. so, if a parcel of air cools it's ability to hold water vapor drops and if it drops to a low enough point that is when the water vapor will condense and turn back into liquid water. This is how clouds and precipitation form on the the windward side of the mountain.
Answer : The time passed in years is 
Explanation :
Half-life = 5730 years
First we have to calculate the rate constant, we use the formula :



Now we have to calculate the time passed.
Expression for rate law for first order kinetics is given by:

where,
k = rate constant = 
t = time passed by the sample = ?
a = let initial amount of the reactant = X g
a - x = amount left after decay process = 
Now put all the given values in above equation, we get


Therefore, the time passed in years is 

where, E^{o} (Ag+/Ag) = std. reduction potential of Ag+ = 0.7994 v
and Sn2+/Sn = std. reduction potential of Sn2+ = -0.14 v
Thus, E^{o}cell = 0.7994v - (-0.14v) = 0.9394 v
Now, ΔG^{o} = -nF

,
where, n = number of electrons = 2
F = Faraday's constant = 96500 C
∴ΔG^{o} = 2 X 96500 X 0.9394 = -1.18 X

Now, using Nernst's Equation we have,
![[tex]E_{cell} = 0.9394 - \frac{2.303X298}{2X96500}log \frac{0.0115}{ 3.5^{2} }](https://tex.z-dn.net/?f=%20%5Btex%5DE_%7Bcell%7D%20%3D%200.9394%20-%20%5Cfrac%7B2.303X298%7D%7B2X96500%7Dlog%20%5Cfrac%7B0.0115%7D%7B%203.5%5E%7B2%7D%20%7D%20)
E_{cell} = 0.9765 v
Finally, ΔG = -nFE = -2 X 96500 X 0.9765 = -1.88 X