1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
max2010maxim [7]
2 years ago
6

1. Un cable está tendido sobre dos postes colocados con una separación de 10,0 m. A la

Physics
1 answer:
ale4655 [162]2 years ago
7 0

Explanation:

Hydraulic Pressure-Control, On-Off Deluge Valve

FP-400Y-5DC

The BERMAD model 400Y-5DC is an elastomeric, hydraulic line pressure operated deluge valve, designed specifically for advanced fire protection systems and the latest industry standards. The 400Y-5DC is activated by a hydraulically operated relay valve, through which opening and closing of the valve can be controlled either with a remote hydraulic command or with a wet pilot line with closed fusible plugs. An integral pressure reducing pilot valve ensures a precise, stable, pre-set downstream water pressure. The optional valve position indicator can include a limit switch suitable for Fire & Gas monitoring systems. The 400Y-5DC is ideal for systems that combine a remote wet pilot line with a high pressure water supply.

You might be interested in
How many significant figures are in 107 moles of sodium
Blizzard [7]

Answer:

3 significant figures

Explanation:

here  zero is counted as one of the significant figures since it lies next to an integer.

hence the number has 3 sfg

8 0
3 years ago
Function of a simple pendulum​
Misha Larkins [42]

Answer:

A pendulum is a mechanical machine that creates a repeating, oscillating motion. A pendulum of fixed length and mass (neglecting loss mechanisms like friction and assuming only small angles of oscillation) has a single, constant frequency. This can be useful for a great many things.

From a historical point of view, pendulums became important for time measurement. Simply counting the oscillations of the pendulum, or attaching the pendulum to a clockwork can help you track time. Making the pendulum in such a way that it holds its shape and dimensions (in changing temperature etc.) and using mechanisms that counteract damping due to friction led to the creation of some of the first very accurate all-weather clocks.

Pendulums were/are also important for musicians, where mechanical metronomes are used to provide a notion of rhythm by clicking at a set frequency.

The Foucault pendulum demonstrated that the Earth is, indeed, spinning around its axis. It is a pendulum that is free to swing in any planar angle. The initial swing impacts an angular momentum in a given angle to the pendulum. Due to the conservation of angular momentum, even though the Earth is spinning underneath the pendulum during the day-night cycle, the pendulum will keep its original plane of oscillation. For us, observers on Earth, it will appear that the plane of oscillation of the pendulum slowly revolves during the day.

Apart from that, in physics a pendulum is one of the most, if not the most important physical system. The reason is this - a mathematical pendulum, when swung under small angles, can be reasonably well approximated by a harmonic oscillator. A harmonic oscillator is a physical system with a returning force present that scales linearly with the displacement. Or, in other words, it is a physical system that exhibits a parabolic potential energy.

A physical system will always try to minimize its potential energy (you can accept this as a definition, or think about it and arrive at the same conclusion). So, in the low-energy world around us, nearly everything is very close to the local minimum of the potential energy. Given any shape of the potential energy ‘landscape’, close to the minima we can use Taylor expansion to approximate the real potential energy by a sum of polynomial functions or powers of the displacement. The 0th power of anything is a constant and due to the free choice of zero point energy it doesn’t affect the physical evolution of the system. The 1st power term is, near the minimum, zero from definition. Imagine a marble in a bowl. It doesn’t matter if the bowl is on the ground or on the table, or even on top of a building (0th term of the Taylor expansion is irrelevant). The 1st order term corresponds to a slanted plane. The bottom of the bowl is symmetric, though. If you could find a slanted plane at the bottom of the bowl that would approximate the shape of the bowl well, then simply moving in the direction of the slanted plane down would lead you even deeper, which would mean that the true bottom of the bowl is in that direction, which is a contradiction since we started at the bottom of the bowl already. In other words, in the vicinity of the minimum we can set the linear, 1st order term to be equal to zero. The next term in the expansion is the 2nd order or harmonic term, a quadratic polynomial. This is the harmonic potential. Every higher term will be smaller than this quadratic term, since we are very close to the minimum and thus the displacement is a small number and taking increasingly higher powers of a small number leads to an even smaller number.

This means that most of the physical phenomena around us can be, reasonable well, described by using the same approach as is needed to describe a pendulum! And if this is not enough, we simply need to look at the next term in the expansion of the potential of a pendulum and use that! That’s why each and every physics students solves dozens of variations of pendulums, oscillators, oscillating circuits, vibrating strings, quantum harmonic oscillators, etc.; and why most of undergraduate physics revolves in one way or another around pendulums.

Explanation:

7 0
3 years ago
A 103 kg horizontal platform is a uniform disk of radius 1.71 m and can rotate about the vertical axis through its center. A 68.
Andreyy89

Answer:

I_{total}=220.64 kg*m^{2}

Explanation:

The moment of inertia of the system is equal to the each population and the platform inertia so

Inertia disk

I_{disk}=\frac{1}{2}*m_{disk}*(r_{p})^{2}

Inertia person

I_{p}=\frac{1}{2}*m_{p}*(r_{p})^{2}

Inertia dog

I_{d}=\frac{1}{2}*m_{d}*(r_{d})^{2}

The Inertia of the system is the sum of each mass taking into account that all exert the force of inertia:

I_{total}=I_{disk}+I_{p}+I_{d}

I_{total}=\frac{1}{2}*103kg*(1.71)^{2}+\frac{1}{2}*68.9kg*(1.09)^{2}+\frac{1}{2}*27.7kg*(1.45)^{2}

I_{total}=220.64 kg*m^{2}

5 0
3 years ago
A group of students decides to set up an experiment in which they will measure the specific heat of a small amount of metal. The
lesya692 [45]
I think the answer is C
7 0
3 years ago
Water boiling<br><br> Which one is shown? (Look at pic)
Mkey [24]

Answer:

conduction.

Explanation:

Hoped I helped! Im Eve btw have a great day and consider marking this brainliest if you do thank you in advanced!

4 0
3 years ago
Other questions:
  • Describe how you can use tempenture to compare how much thermal energy two objects have
    15·1 answer
  • Students are given some resistors with various resistances a battery with internal resistance
    5·2 answers
  • A pulley is most closely related to which simple machine?
    8·2 answers
  • 4. Which of the following statement is correct regarding velocity and speed of a moving body?
    13·2 answers
  • A 5.00-kg block of ice is sliding across a frozen pond at 2.00 m/s. A 7.60-N force is applied in the direction of motion. After
    14·1 answer
  • What is the difference between longitudinal and transverse waves
    7·1 answer
  • On a cello, the string with the largest linear density (1.44 x 10-2 kg/m) is the C string. This string produces a fundamental fr
    9·1 answer
  • The space shuttle releases a satellite into a circular orbit 630 km above the Earth.
    12·1 answer
  • Describe, in as much detail as you can, how the energy
    7·1 answer
  • How many molecules of water are recycled into one molecule of glucose during photosynthesis?
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!