Answer:
C. Pulmonary endurance
Explanation:
I'm pretty sure it's "C" because cardiovascular and pulmonary endurance are the same thing and usually you'd hear cardiovascular more than pulmonary.
Sorry if I'm wrong!
Answer:
Letter b is wavelength. Letter a is amplitude.
Explanation:
Let's imagine a simple experiment. Imagine you have a long thick rope which one end is at your hands, and you start an oscillatory motion in it, moving your hand up and down. Then a friend of you take a picture of the rope in motion, looking at the rope laterally. Now let's find the wavelength and amplitude. Amplitude is "The distance from the center of the oscillation of the rope (when the rope was not in motion) to its high or low point", or the vertical displacement, in our experiment. On the other hand, wavelength is "The distance between one high point /low point and the next high point /low point". Take a look at a photo of a wave in your textbook and you will find the answer as well. ; )
The force per unit of length between two wires carrying current is

where I1 and I2 are the currents in the two wires, while r is the distance between them.
We can see from the formula that the force is proportional to the product between I1 and I2:

so, if we double both I1 and I2, we get a factor 4:

so, the force between the wires will be 4 times the original value.
Answer:
2.83 x 10^4m/s
Explanation:
First, let us calculate the time taken by the object to hit the surface of the earth.
H = 4.1 x 10^7m
g = 9.8m/s2
t = √(2H/g)
t = √((2x 4.1 x 10^7) /9.8)
t = 2892.64secs
Now, we can find the velocity with which the object strikes the earth as follows:
V = gt
V = 9.8 x 2892.64
V = 2.83 x 10^4m/s
Answer:
1. Friction enables us to walk freely.
2. It helps to support ladder against wall.
3. It becomes possible to transfer one form of energy to another.
4. Objects can be piled up without slipping.