1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tpy6a [65]
3 years ago
8

When heating water, during what temperature range will the temperature cease to change for some time?

Physics
1 answer:
Morgarella [4.7K]3 years ago
7 0

Answer: Option (B) is the correct answer.

Explanation:

As we know that the temperature when the vapor pressure of liquid becomes equal to the atmospheric pressure surrounding the liquid. And, during this temperature liquid state of substance changes into vapor state.

But during this process of change in state of substance the temperature will cease to change for some time because unless and until all the liquid molecules do not convert into vapor state the temperature will not rise or change.

As the boiling point of water is 100^{o}C so the temperature ceases to change from 98^{o}C to 102^{o}C.

Therefore, we can conclude that when heating water, during 98^{o}C to 102^{o}C temperature range the temperature will cease to change for some time.

You might be interested in
The first step in turning a rock into a sediment is ________. Select one:
Debora [2.8K]

Answer:

The first step in turning a rock into a sediment is Compaction .

Explanation:

Lithification is a process of changing rock into sediments. There are two steps for a rock to lithify. These steps are as follows

  • The first step of lithification is compaction where sediments are erosed together by weight of the it. Thus, the upper layers of sediments causes compaction of lower layers.
  • The next process of lithification is cementation. In this fluids fill the space between the loose particles.

Hence, the first step for turning rock into sediments is compaction.


6 0
3 years ago
In case A below, a 1 kg solid sphere is released from rest at point S. It rolls without slipping down the ramp shown, and is lau
mestny [16]

Answer:

the block reaches higher than the sphere

\frac{y_{sphere}} {y_block} = 5/7

Explanation:

We are going to solve this interesting problem

A) in this case a sphere rolls on the ramp, let's find the speed of the center of mass at the exit of the ramp

Let's use the concept of conservation of energy

starting point. At the top of the ramp

         Em₀ = U = m g y₁

final point. At the exit of the ramp

         Em_f = K + U = ½ m v² + ½ I w² + m g y₂

notice that we include the translational and rotational energy, we assume that the height of the exit ramp is y₂

energy is conserved

          Em₀ = Em_f

         m g y₁ = ½ m v² + ½ I w² + m g y₂

angular and linear velocity are related

        v = w r

the moment of inertia of a sphere is

         I = \frac{2}{5} m r²

we substitute

         m g (y₁ - y₂) = ½ m v² + ½ (\frac{2}{5} m r²) (\frac{v}{r})²

         m g h = ½ m v² (1 + \frac{2}{5})

where h is the difference in height between the two sides of the ramp

h = y₂ -y₁

         mg h = \frac{7}{5} (\frac{1}{2} m v²)

         v = √5/7  √2gh

This is the exit velocity of the vertical movement of the sphere

         v_sphere = 0.845 √2gh

B) is the same case, but for a box without friction

   starting point

          Em₀ = U = mg y₁

   final point

          Em_f = K + U = ½ m v² + m g y₂

          Em₀ = Em_f

          mg y₁ = ½ m v² + m g y₂

          m g (y₁ -y₂) = ½ m v²

          v = √2gh

this is the speed of the box

          v_box = √2gh

to know which body reaches higher in the air we can use the kinematic relations

          v² = v₀² - 2 g y

at the highest point v = 0

           y = vo₀²/ 2g

for the sphere

           y_sphere = 5/7 2gh / 2g

           y_esfera = 5/7 h

for the block

           y_block = 2gh / 2g

            y_block = h

       

therefore the block reaches higher than the sphere

         \frac{y_{sphere}} {y_bolck} = 5/7

3 0
3 years ago
What force acts on all objects, all the time on Earth?
TiliK225 [7]

The force that acts on all objects, all the time on Earth is gravitational force.

The force that surface exert on an object perpendicularly is normal reaction.

<h3>What force acts on all objects, all the time on Earth?</h3>
  • Force due to gravity is gravitational pull on objects due to its position on earth's surface.

The force due to gravity on object's is calculated by applying Newton's second law of motion as follows;

F = mg

where;

  • m is the mass of the object
  • g is acceleration due to gravity

The force that surface exert on an object perpendicularly is normal reaction.

Thus, the force that acts on all objects, all the time on Earth is gravitational force.

Learn more about force of gravity here: brainly.com/question/2537310

7 0
3 years ago
PLEASE HELP ASAP!!!
I am Lyosha [343]

Answer:

B - Velocity

Explanation:

Velocity definition: “The speed of something in a given direction.”

6 0
2 years ago
6 A test of a driver's perception/reaction time is being conducted on a special testing track with level, wet pavement and a dri
mylen [45]

Answer:

a. 10.5 s b. 6.6 s

Explanation:

a. The driver's perception/reaction time before drinking.

To find the driver's perception time before drinking, we first find his deceleration from

v² = u² + 2as where u = initial speed of driver = 50 mi/h = 50 × 1609 m/3600 s = 22.35 m/s, v = final speed of driver = 0 m/s (since he stops), a = deceleration of driver and s = distance moved by driver = 385 ft = 385 × 0.3048 m = 117.35 m

So, a = v² - u²/2s

substituting the values of the variables into the equation, we have

a = v² - u²/2s

a = (0 m/s)² - (22.35 m/s)²/2(117.35 m)

a =  - 499.52 m²/s²/234.7 m

a = -2.13 m/s²

Using a = (v - u)/t where u = initial speed of driver = 50 mi/h = 50 × 1609 m/3600 s = 22.35 m/s, v = final speed of driver = 0 m/s (since he stops), a = deceleration of driver = -2.13 m/s² and t = reaction time

So, t = (v - u)/a

Substituting the values of the variables into the equation, we have

t = (0 m/s - 22.35 m/s)/-2.13 m/s²

t = - 22.35 m/s/-2.13 m/s²

t = 10.5 s

b. The driver's perception/reaction time after drinking.

To find the driver's perception time after drinking, we first find his deceleration from

v² = u² + 2as where u = initial speed of driver = 50 mi/h = 50 × 1609 m/3600 s = 22.35 m/s, v = final speed of driver = 30 mi/h = 30 × 1609 m/3600 s = 13.41 m/s, a = deceleration of driver and s = distance moved by driver = 385 ft = 385 × 0.3048 m = 117.35 m

So, a = v² - u²/2s

substituting the values of the variables into the equation, we have

a = v² - u²/2s

a = (13.41 m/s)² - (22.35 m/s)²/2(117.35 m)

a = 179.83 m²/s² - 499.52 m²/s²/234.7 m

a = -319.69 m²/s² ÷ 234.7 m

a = -1.36 m/s²

Using a = (v - u)/t where u = initial speed of driver = 50 mi/h = 50 × 1609 m/3600 s = 22.35 m/s, v = final speed of driver = 30 mi/h = 30 × 1609 m/3600 s = 13.41 m/s, a = deceleration of driver = -1.36 m/s² and t = reaction time

So, t = (v - u)/a

Substituting the values of the variables into the equation, we have

t = (13.41 m/s - 22.35 m/s)/-1.36 m/s²

t = - 8.94 m/s/-1.36 m/s²

t = 6.6 s

4 0
3 years ago
Other questions:
  • A bullet is fired vertically upward from a gun with an initial velocity of 225 m/s. How high does the bullet go in meters? [Igno
    13·1 answer
  • Which of the following events happens first in the development of a new organism? A. A sperm fertilizes an egg to form a zygote.
    9·2 answers
  • a bus carrying a band and all their equipment has an initial velocity of 14 m/s. it accelerates for 3seconds
    7·1 answer
  • Salina’s internal desire to exercise is called
    5·2 answers
  • The work done by static friction can be : a. Zero
    14·1 answer
  • Select all that apply. A vector always consists of _____. size velocity distance direction
    11·2 answers
  • Sound travels faster through rigid material like steel rather than through spongy materials like rubber. Why?
    8·1 answer
  • Calculate the refractive index for a substance where the angle of incidence is 300 , the angle of refraction is 600 , and the re
    5·1 answer
  • Plzz answer this question correctly
    7·1 answer
  • 6. A car accelerates from rest to 5m/s in 20 s. The force from the engine is 2000N. The force of air resistance and friction act
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!