Answer:
1.5 × 10² mL
Explanation:
Step 1: Given data
- Initial pressure of the gas (P₁): 1.9 atm
- Initial volume of the gas (V₁): 80 mL
- Final pressure of the gas (P₂): 1.0 atm (standard pressure)
- Final volume of the gas (V₂): ?
Step 2: Calculate the final volume of the gas
For an ideal gas, we can calculate the final volume of the gas using Boyle's law.
P₁ × V₁ = P₂ × V₂
V₂ = P₁ × V₁/P₂
V₂ = 1.9 atm × 80 mL/1.0 atm
V₂ = 1.5 × 10² mL
Since the pressure decreased, the volume of the gas increased.
The answer is strong winds
Solar flare: a brief eruption of intense high-energy radiation from the sun's surface, associated with sunspots and causing electromagnetic disturbances on the earth, as with radio frequency communications and power line transmissions.
Sunspot Prominence: It is a large, bright, gaseous feature extending outward from the Sun's surface, often in a loop shape. It is similar to a Solar Flare
Hope this help
Answer:
Oasis
Explanation:
An area in the desert that has water in it is called an oasis.
The balanced neutralization reaction here is:
Ca(OH)2 + 2HBr --> 2H2O + CaBr2
Notice that two moles of Her are required to neutralize every one mole of Ca(OH)2. This means that for however many moles of Her reacted, HALF as many moles of Ca(OH)2 reacted as well.
Moles of HBr reacted = 0.75 M x 0.345 L = 0.259 mol
Moles of Ca(OH)2 reacted = 0.259 mol / 2 = 0.130 mol
Concentration of Ca(OH)2 = 0.130 mol / 0.250 L = 0.52 M