Answer:
There are no examples but this should be evaporation
Explanation:
A process with a negative change in enthalpy and a negative change in entropy will generally be: <u>spontaneous</u>.
<h3>Gibbs free energy:</h3>
Since the Gibbs free energy is a parameter that tells us whether a chemical reaction is spontaneous (Gibbs free energy less than 0) or nonspontaneous (Gibbs free energy greater than 0) in this situation, we can describe it mathematically as:
ΔG = ΔH - TΔS
Therefore, any process with a negative change in enthalpy and a positive change in entropy will be spontaneous. If the enthalpy and the entropy are both negative, the subtraction becomes always negative, for which the Gibbs free energy is also negative.
One of the most crucial thermodynamic functions for the characterization of a system is the Gibbs free energy. It influences results like the voltage of an electrochemical cell and the equilibrium constant for a reversible reaction, among others.
Learn more about spontaneous here:
brainly.com/question/16975806
#SPJ4
(a) The required magnitude of the electric field when the point charge is an electron is 5.57 x 10⁻¹¹ N/C.
(b) The required magnitude of the electric field when the point charge is an proton is 1.02 x 10⁻⁷ N/C.
<h3>
Magnitude of electric field </h3>
The magnitude of electric field is given by the following equation.
F = qE
But F = mg
mg = qE
E = mg/q
where;
- E is the electric field
- m is mass of the particle
- g is acceleration due to gravity
- q is charge of the particle
<h3>For an electron</h3>
E = (9.11 x 10⁻³¹ x 9.8)/(1.602 x 10⁻¹⁹)
E = 5.57 x 10⁻¹¹ N/C
<h3>For proton</h3>
E = (1.67 x 10⁻²⁷ x 9.8)/(1.602 x 10⁻¹⁹)
E = 1.02 x 10⁻⁷ N/C
Thus, the required vertical electric field is greater when the charge is proton.
Learn more about electric field here: brainly.com/question/14372859
#SPJ1
Some examples of constant velocity (or at least almost- constant velocity) motion include (among many others): • A car traveling at constant speed without changing direction. A hockey puck sliding across ice. A space probe that is drifting through interstellar space.
Answer:
Explanation:
Expression for time period of a pendulum is as follows
T = 
l is length of pendulum from centre of bob and g is acceleration due to gravity
Given
Time period T = 1.583
g = 9.846
Substituting the values
1.583 = 
l = 
l = .6244 m
= 62.44 cm
Length of rod = length of pendulum - radius of bob
= 62.44 - 13.62
= 48.82 cm
= .488 m