Answer:
3. 116.5 V
4. 119.6 V
Explanation:
3. Determination of the voltage.
Resistance (R) = 25 Ω
Current (I) = 4.66 A
Voltage (V) =?
V = IR
V = 4.66 × 25
V = 116.5 V
Thus, the voltage is 116.5 V
4. Determination of the voltage.
Current (I) = 9.80 A
Resistance (R) = 12.2 Ω
Voltage (V) =?
V = IR
V = 9.80 × 12.2
V = 119.6 V
Thus, the voltage is 119.6 V
<span>Force = total mass * acceleration = 330 * 4 = 1320 N so D is correct !!
</span>
Answer:
An element with 7 valence electrons will most likely be a halogen and gain an electron
Explanation:
<span>I’ve answered this
question before so if these are the choices to the question presented:
An oxygen atom double-bonded to a carbon atom, with a hydrogen atom
single-bonded to the same carbon atom. </span><span>
<span>A hydrogen atom covalently bonded to an oxygen atom, which is
covalently bonded to a carbon in the carbon chain. </span>
<span>A carbon atom single-bonded between two other carbon atoms,
with an oxygen atom double-bonded to the central carbon atom as well. </span>
<span>An oxygen atom single-bonded between two carbon atoms within
a carbon chain.
Then, the answer would be “a hydrogen atom covalently bonded to an oxygen atom,
which is covalently bonded to a carbon in the carbon chain.<span>”</span></span></span>
Answer:
neq N2O4 = 0.9795 mol.....P = 0.5 atm; T = 25°C
Explanation:
ni change eq.
N2O4 1 1 - x 0.8154.....P = 1 atm; T = 25°C
NO2 0 0 + x x
∴ x = neq = Peq.V / R.T.....ideal gas mix
if P = 0.5 atm, T = 25°C; assuming: V = 1 L
⇒ x = neq = ((0.5 atm)(1 L))/((0.082 atm.L/K.mol)(298 K))
⇒ x = neq = 0.0205 mol
⇒ neq N2O4 = 1 - x = 1 - 0.0205 = 0.9795 mol