Answer:
C) 3,000 kg m/s
Explanation:
We can consider the horizontal velocity of the motorcycle to be zero, since it rolls off the edge of the cliff very slowly. So, we only need to find the vertical velocity at the time of the impact with the ground.
The vertical velocity of the motorcycle at time t is given by (free-fall motion):

where
is the initial vertical velocity (zero, since the motorcycle is not moving)
g = 9.8 m/s^2 is the acceleration due to gravity
t is the time
Since the motorcycle hits the ground after t = 3 seconds, we have

And since we know its mass, m=100 kg, we can find its momentum:

and the negative sign simply means downward direction.
Answer:
r₁/r₂ = 1/2 = 0.5
Explanation:
The resistance of a wire is given by the following formula:
R = ρL/A
where,
R = Resistance of wire
ρ = resistivity of the material of wire
L = Length of wire
A = Cross-sectional area of wire = πr²
r = radius of wire
Therefore,
R = ρL/πr²
<u>FOR WIRE A</u>:
R₁ = ρ₁L₁/πr₁² -------- equation 1
<u>FOR WIRE B</u>:
R₂ = ρ₂L₂/πr₂² -------- equation 2
It is given that resistance of wire A is four times greater than the resistance of wire B.
R₁ = 4 R₂
using values from equation 1 and equation 2:
ρ₁L₁/πr₁² = 4ρ₂L₂/πr₂²
since, the material and length of both wires are same.
ρ₁ = ρ₂ = ρ
L₁ = L₂ = L
Therefore,
ρL/πr₁² = 4ρL/πr₂²
1/r₁² = 4/r₂²
r₁²/r₂² = 1/4
taking square root on both sides:
<u>r₁/r₂ = 1/2 = 0.5</u>
Answer:
ΔF=125.22 %
Explanation:
We know that drag force on the car given as

=Drag coefficient
A=Projected area
v=Velocity
ρ=Density
All other quantity are constant so we can say that drag force and velocity can be given as

Now by putting the values



Percentage Change in the drag force



ΔF=125.22 %
Therefore force will increase by 125.22 %.
Answer:The distance o the ramp that the car traveled is given by d=(1/2)at^2=(0.5)(3.96)(5.76)^2=65.69 meters. The horizontal component of this travel is 65.69*
Explanation: