<span>All of these are directly proportional to each other, meaning that if one goes up or down, they all do the same.
So if the temperature increases so does the heat. If the heat increases then so does the thermal energy. If the temperature goes up then so does the thermal energy. ETC...</span>
Answer:
even if it all could be used, it wouldn't be enough
Explanation:
The land area of the US is about 5.45% of the world's area, so the amount of released heat over the area of the US is on the order of 2.4 Tw. Current technology for converting geothermal energy to electricity is about 12% efficient, so the available energy might amount to 0.29 Tw if it could all be captured.
Energy consumption in the US in 2019 was on the order of 0.46 Tw. This suggests that even if <em>all</em> of the thermal energy radiated by the Earth from the US could be turned to useful forms of energy, it would meet only about 60% of the US need for energy.
The answer:
the full question is as follow:
<span>A Texas rancher wants to fence off his four-sided plot of flat land. He measures the first three sides, shown as A, B, and C in Figure below , where A = 4.90 km and θC = 15°. He then correctly calculates the length and orientation of the fourth side D. What is the magnitude and direction of vector D?
As shown in the figure,
A + B + C + D = 0, so to find the </span>magnitude and direction of vector D, we should follow the following method:
D = 0 - (A + B + C) ,
let W = - (A + B + C), so the magnitude and direction of vector D is the same of the vector W characteristics
Magnitude
A + B + C = <span> (4.90cos7.5 - 2.48sin16 - 3.02cos15)I</span>
<span>+ (-4.9sin7.5 + 2.48cos16 + 3.02sin15)J
</span>= 1.25I +2.53J
the magnitude of W= abs value of (A + B + C) = sqrt (1.25² + 2.53²)
= 2.82
the direction of D can be found by using Dx and Dy value
we know that tan<span>θo = Dx / Dy = 1.25 / 2.53 =0.49
</span>tanθo =0.49 it implies θo = arctan 0.49 = 26.02°
direction is 26.02°