You have to use Avogadro's number (6.02x10^23 molecules/mole) to find the number of moles each reactant starts off with.
moles of Fe and O₂:
12 atoms/(6.02x10^23 atoms/mole)=1.99x10^-23 mol Fe
6 molecules/(6.02x10^23 molecules/mole)=9.967x10^-24 mol <span>O₂
</span>Then you find the limiting reagent by finding how much product each given amount of reactant can make. Which ever one produces the least amount of product is the limiting reagent.
amount of Fe₂O₃ produced:
<span>(1.99x10^-23 mol Fe)x(2mol/4mol)= 9.967x10^-24mol Fe</span>₂O₃<span>
</span>(9.967x10^-24 mol O₂)x(2mol/3mol)= 6.645x10^-24 mol Fe₂O₃<span>
</span>since oxygen produces the leas amount of product, oxygen is the limiting reagent. since we know that oxygen is the limiting reagent we can use the amount of product formed with oxygen to find the amount of iron used.
6.645x10^-24 mol Fe₂O₃x(4mol/2mol)=1.329x10^-23 mol Fe consumed
<span> find the amount left over by subtracting the original amount of Fe by the amount consumed in the reaction.
</span>1.993x10^-23-1.329x10^-23= 6.645x10^-23mol Fe left
find the number of atoms by multiplying that by Avogadro's number.
<span>(6.645x10^-23mol)x(6.02x10^23 atoms/mol)=4 atoms
</span>therefore 4 atoms of Fe will be left over after the reaction happens.
I hope this helps.
Answer:
Explanation:
Pair 2.50g of O₂ and 2.50g of N₂
The atoms sample with the largest number of moles since the masses are the same would be the one with lowest molar mass according the the equation below:
Number of moles = 
Atomic mass of O = 16g and N = 14g
Molar mass of O₂ = 16 x 2 = 32gmol⁻¹
Molar mass of N₂ = 14 x 2 = 28gmol⁻¹
Number of moles of O₂ =
= 0.078mole
Number of moles of N₂ =
= 0.089mole
We see that N₂ has the largest number of moles
Answer:
Average atomic mass of chlorine is 35.48 amu.
Explanation:
Given data:
Percent abundance of Cl-35 = 76%
Percent abundance of Cl-37 = 24%
Average atomic mass = ?
Solution:
Average atomic mass = (abundance of 1st isotope × its atomic mass) +(abundance of 2nd isotope × its atomic mass) / 100
Average atomic mass = (76×35)+(24×37) /100
Average atomic mass = 2660 + 888 / 100
Average atomic mass = 3548/ 100
Average atomic mass = 35.48 amu
Average atomic mass of chlorine is 35.48 amu.
3Zn + 8HNO₃⇒ 3Zn(NO₃)₂ + 2NO + 4H₂O
<h3>Further explanation
</h3>
Equalization of chemical reaction equations can be done using variables. Steps in equalizing the reaction equation:
- 1. gives a coefficient on substances involved in the equation of reaction such as a, b, or c etc.
- 2. make an equation based on the similarity of the number of atoms where the number of atoms = coefficient × index between reactant and product
- 3. Select the coefficient of the substance with the most complex chemical formula equal to 1
For gas combustion reaction which is a reaction of hydrocarbons with oxygen produces CO₂ and H₂O (water vapor). can use steps:
Balancing C atoms, H and the last O atoms
Reaction
Zn + HNO₃⇒ Zn(NO₃)₂ + NO + H₂O
aZn + bHNO₃⇒ Zn(NO₃)₂ + cNO + dH₂O
Zn : left = a, right =1 ⇒a=1
H : left = b, right = 2d⇒ b=2d (eq 1)
N : left = b, right = 2+c⇒b=2+c (eq 2)
O : left = 3b, right = 6+c+d ⇒3b=6+c+d(eq 3)
3(2d)=6+c+d
6d=6+c+d
5d=6+c (eq 4)
3(2+c)=6+c+d
6+3c=6+c+d
2c=d (eq 5)
5(2c)=6+c
10c=6+c
9c=6
c = 2/3
d = 2 x 2/3
d = 4/3
b = 2 x 4/3
b = 8/3
The equation
aZn + bHNO₃⇒ Zn(NO₃)₂ + cNO + dH₂O to
Zn + 8/3HNO₃⇒ Zn(NO₃)₂ + 2/3NO + 4/3H₂O x 3
3Zn + 8HNO₃⇒ 3Zn(NO₃)₂ + 2NO + 4H₂O