Answer:
Both charges must have the same charge, Qt/2.
Explanation:
Let the two charges have charge Q1 and Q2, respectively.
Use Coulombs's Law to find an expression for the force between the two charges.
, where
Ke is Coulomb's contant and
r is the distance between the charges.
We know from the question that
Q1 + Q2 = Qt
So,
Q2 = Qt - Q1

Simplify to obtain,

In order to find the value of Q1 for which F is the maximum, we will use the optimization technique of calculus.
Differentiate F with respect to Q1,

Equate the differential to 0, to obtain the value of Q1 for which F is the maximum.

It follows that
.
A - the objects are too small
GRAVITATIONAL FORCE IS EXPERIENCED BY ALL OBJECTS IN THE UNIVERSE ALL THE TIME. BUT THE ORDINARY OBJECTS YOU SEE EVERY DAY HAVE MASSES SO SMALL THAT THEIR ATTRACTION TOWARD EACH OTHER IS HARD TO DETECT. -https://www.ftsd.org/cms/lib6/MT01001165/Centricity/ModuleInstance/630/CHAPTER_2_NOTES_FOR_EIGHTH_GRADE_PHYSICAL_SCIENCE.pdf
Answer: In physics, mass is not the same as weight, even though mass is often determined by measuring the object's weight using a spring scale, rather than balance scale comparing it directly with known masses.
Explanation: