1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sergeinik [125]
3 years ago
13

What are the big 5 equations for physics

Physics
1 answer:
olga2289 [7]3 years ago
3 0

v is velocity, x is position, t is time, and a is acceleration.

You might be interested in
What’s the kinetic energy of the roller coaster at the top and bottom of the hill? Use . A kiddie roller coaster car has a mass
serious [3.7K]
K.E1=1/2×100×3²
=50×9
=450J
K.E2=1/2×100×36
=50×36
=1800J
0 0
4 years ago
Read 2 more answers
FIGURE 2 shows a 1.5 kg block is hung by a light string which is wound around a smooth pulley of radius 20 cm. The moment of ine
Sindrei [870]

Answer:

At t = 4.2 s

Angular velocity: 6. 17 rad /s

The number of revolutions: 2.06

Explanation:

First, we consider all the forces acting on the pulley.

There is only one force acting on the pulley, and that is due to the 1.5 kg mass attached to it.

Therefore, the torque on the pulley is

\tau=Fd=mg\cdot R

where m is the mass of the block, g is the acceleration due to gravity, and R is the radius of the pulley.

Now we also know that the torque is related to angular acceleration α by

\tau=I\alpha

therefore, equating this to the above equation gives

mg\cdot R=I\alpha

solving for alpha gives

\alpha=\frac{mgR}{I}

Now putting in m = 1.5 kg, g = 9.8 m/s^2, R = 20 cm = 0.20 m, and I = 2 kg m^2 gives

\alpha=\frac{1.5\cdot9.8\cdot0.20}{2}\boxed{\alpha=1.47s^{-2}}

Now that we have the value of the angular acceleration in hand, we can use the kinematics equations for the rotational motion to find the angular velocity and the number of revolutions at t = 4.2 s.

The first kinematic equation we use is

\theta=\theta_0+\omega_0t+\frac{1}{2}\alpha t^2

since the pulley starts from rest ω0 = 0 and theta = 0; therefore, we have

\theta=\frac{1}{2}\alpha t^2

Therefore, ar t = 4.2 s, the above gives

\theta=\frac{1}{2}(1.47)(4.2)^2

\boxed{\theta=12.97}

So how many revolutions is this?

To find out we just divide by 2 pi:

\#\text{rev}=\frac{\theta}{2\pi}=\frac{12.97}{2\pi}\boxed{\#\text{rev}=2.06}

Or about 2 revolutions.

Now to find the angular velocity at t = 4.2 s, we use another rotational kinematics equation:

\omega^2=w^2_0+2\alpha(\Delta\theta)_{}

Since the pulley starts from rest, ω0 = 0. The change in angle Δθ we calculated above is 12.97. The value of alpha we already know to be 1.47; therefore, the above becomes:

\omega^2=0+2(1.47)(12.97)w^2=38.12\boxed{\omega=6.17.}

Hence, the angular velocity at t = 4.2 w is 6. 17 rad / s

To summerise:

at t = 4.2 s

Angular velocity: 6. 17 rad /s

The number of revolutions: 2.06

3 0
1 year ago
A machine is currently set to a feed rate of 5.921 inches per minute (IPM). Te machinist changes this setting to 6.088 IPM. By h
lukranit [14]

Answer:

By 16.7% or 0.167 IPM

Explanation:

Substracting the final IPM (6.088) to the initial IPM (5.921) gives us the net difference, which is how much did it increase in IPM. Multiplying this number by 100 gives us the percentual increase in the feed rate.

4 0
3 years ago
Read 2 more answers
A particle with charge 3.01 µC on the negative x axis and a second particle with charge 6.02 µC on the positive x axis are each
ra1l [238]

Answer:

The third particle should be at 0.0743 m from the origin on the negative x-axis.

Explanation:

Let's assume that the third charge is on the negative x-axis. So we have:

E_{1}+E_{3}-E_{2}=0

We know that the electric field is:

E=k\frac{q}{r^{2}}

Where:

  • k is the Coulomb constant
  • q is the charge
  • r is the distance from the charge to the point

So, we have:

k\frac{q_{1}}{r_{1}^{2}}+k\frac{q_{3}}{r_{3}^{2}}-k\frac{q_{2}}{r_{2}^{2}}=0

Let's solve it for r(3).

\frac{3.01}{0.0429^{2}}+\frac{9.03}{r_{3}^{2}}-\frac{6.02}{0.0429^{2}}=0

r_{3}=0.0743\:  

Therefore, the third particle should be at 0.0743 m from the origin on the negative x-axis.

I hope it helps you!

 

3 0
3 years ago
Spiders kan swim???????
Nastasia [14]

Answer:

Spiders cannot actually propel their bodies through the water as a swimmer does, but they can use objects to get across the water and some can run across the water.

Explanation:

3 0
3 years ago
Read 2 more answers
Other questions:
  • If you drive 125 km in 2 hours, what is your average speed
    11·2 answers
  • What are scientists who study the forces and shape of the earth called?
    8·1 answer
  • A powerboat, starting from rest maintains a constant acceleration. After a certain time Δt, its displacement and velocity are Δr
    12·1 answer
  • “Is there a relationship between mass and gravity of a planet?” If there is a relationship, (such as- as the mass gets bigger th
    5·1 answer
  • A 4.5 kg mass is accelerated at 40 m/s/s what is the force that was applied
    13·1 answer
  • Which of the following is a mixture?
    13·1 answer
  • What is the source of gentian viole?​
    11·1 answer
  • I have two of these so if you think this is easy then another free ten points in my profile!
    5·2 answers
  • When the net force of opposite forces is zero , the forces are
    14·1 answer
  • Is the rate at which velocity change?<br>____________​
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!