Answer:
N = 6.67 N
Explanation:
The frictional or frictional force is a force that arises from the contact of two bodies and opposes movement.
The friction is due to imperfections and roughness, mainly microscopic, that exist on the surfaces of the bodies. Upon contact, these roughnesses engage with each other making movement difficult. To minimize the effect of friction, either the surfaces are polished or lubricated, since the oil fills the imperfections, preventing them from snagging.
As the frictional force depends on the materials and the force exerted on one another, its magnitude is obtained by the following expression:
f = μ*N Formula (1)
where:
f is the friction force (N)
μ is the coefficient of friction
N is the normal force (N)
Data
f = 0.2 N : frictional force between the steel spatula and the Oiled Steel frying pan
μ = 0.03 :coefficient of kinetic friction between the two materials
Calculating of normal force
We replace data in the formula (1)
f = μ*N
0.2 = 0.03*N
N = 0.2 / 0.03
N = 6.67 N
Answer:
Though you have not gave the choices, I do believe it is “testing”
Explanation:
Answer:
17. NADH has a molar extinction coefficient of 6200 M2 cm at 340 nm. Calculate the molar concentration of NADH required to obtain an absorbance of 0.1 at 340 nm in a 1-cm path length cuvette. 18. A sample with a path length of 1 cm absorbs 99.0% of the incident light at a wavelength of 274 nm, measured with respect to an appropriate solvent blank. Tyrosine is known to be the only chromophore present in the sample that has significant absorption at 274 nm. Calculate the molar concentration of tyrosine in the sample.
Explanation:
Answer:
The value of gauge pressure at outlet = -38557.224 pascal
Explanation:
Apply Bernoulli' s Equation
+
+
=
+
+
--------------(1)
Where
= Gauge pressure at inlet = 3.70105 pascal
= velocity at inlet = 2.4 
= Gauge pressure at outlet = we have to calculate
= velocity at outlet = 3.5 
= 3.6 m
Put all the values in equation (1) we get,
⇒
+
=
+
+ 3.6
⇒ 0.294 =
+ 0.6244 + 3.6
⇒
= 0.294 - 0.6244 - 3.6
⇒
= - 3.9304
⇒
= - 38557.224 pascal
This is the value of gauge pressure at outlet.
Answer:
The answer to your question is: Ke = 144000 Joules
Explanation:
Data
Kinetic energy = ?
mass = 80 kg
speed = 60 m/s
Equation


Ke = 144000 Joules