Since Jim's speed is constant and he is moving in a straight line, he is not accelerating, and we know the net force on him is zero. There is no Force anywhere doing any work. So no power is being added to him or dissipated by him.
Answer : The correct option is (d) 2.73 m
Explanation :
By the 2nd equation of motion,

where,
s = distance or height = ?
u = initial velocity = 3.0 m/s
t = time = 0.5 s
a = acceleration due to gravity = 
Now put all the given values in the above equation, we get:


Therefore, the correct option is (d) 2.73 m
We can use Newton II here (where F=m*a), that F is the net (or resultant) force on the object, m is the mass of the object and a is the acceleration the object experiences.
This means, in this case there would be no friction and absolutely no other force which gives a component in the plane of motion, only then can you assume that F=804N.
Now using F= m*a
804 = 51.7*a
Therefore a = 804/51.7 = 15.55 m/s²
Answer:
I think the answer is a
Explanation:
for it to be accurate has be to exactly 0.9 rad
it is not precise because the answer she is getting is different everytime and not even close. For instance,
It would have been precise if she had gotten 0.37 rad in every attempt. or 0.89 every attempt...