Haber process is the large scale manufacture of a ammonia by reacting nitrogen and hydrogen at a ratio of 1:3
Change in hydrogen concentration is 0.45 - 0.16 = 0.29 moles/l
Therefore, the average rate of reaction of hydrogen = 0.29 / 30 = 0.0096
= 0.0096 moles/liter/sec
Answer:
To increase the yield of H₂ we would use a low temperature.
For an exothermic reaction such as this, decreasing temperature increases the value of K and the amount of products at equilibrium. Low temperature increases the value of K and the amount of products at equilibrium.
Explanation:
Let´s consider the following reaction:
CO(g) + H₂O(g) ⇌ CO₂(g) + H₂(g)
When a system at equilibrium is disturbed, the response of the system is explained by Le Chatelier's Principle: <em>If a system at equilibrium suffers a perturbation (in temperature, pressure, concentration), the system will shift its equilibrium position to counteract such perturbation</em>.
In this case, we have an exothermic reaction (ΔH° < 0). We can imagine heat as one of the products. If we decrease the temperature, the system will try to raise it favoring the forward reaction to release heat and, at the same time, increasing the yield of H₂. By having more products, the value of the equilibrium constant K increases.
When atoms bond together to form molecules, they share or give electrons. If the electrons are shared equally by the atoms, then there is no resulting charge and the molecule is nonpolar.
Use pv=nrT
where p is the pressure,
v is the volume,
n is the number of mole (which can be equal to mass /mr),
T is the temperature in kelvin,
and r is (molar constant) = 8.31 (units)
<span>1)false a in chemical equilibrium concentration of reactant is equal to concentration of product
2)as here they said heat is added in product side means its endothermic reaction and in endothermic reaction on increasing temp. equilibrium shift towards forward direction so its true
3) B)as here mole are equal in reactant and product side that is 2 and if we increase pressure equilibrium shift in dat direction where no. of moles are less and here mole are equal so it will remain unaffected</span>