The correct answer is A. The image shows a nuclear fission. This takes place in any of the heavy nuclei after capture of a neutron. This is the opposite of nuclear fusion. In this case, nuclei are broken down into two.
<span>Tf is the freezing point of the solution(the solvent plus solute).
T*f is the freezing point of the pure solvent(without solute)
i is the van't Hoff factor.It is approximately the number of particles in solution that are made for each particle of the solute that is placed into solution.Therefore, for nonelectrolytes, i = 1.
Kf is the freezing point depression constant.For water, Kf = 1.86 Degree C/m, or 1.86 Degree C.kg/mol.
Tf is -1.58 Degree C</span>
1. mol ratio of Al(NO₃)₃ : Na₂CO₃ = 2 : 3
2. Na₂CO₃ as a limiting reactant
<h3>Further explanation</h3>
Given
Reaction
2 Al(NO₃)₃ + 3 Na₂CO₃ → Al₂(CO₃)₃ + 6 NaNO₃
Required
mol ratio
Limiting reactant
Solution
The reaction coefficient in the chemical equation shows the mole ratio of the components of the compound involved in the reaction (reactants and products)
1. From the equation mol ratio of Al(NO₃)₃ : Na₂CO₃ = 2 : 3
2. mol : coefficient of Al(NO₃)₃ : Na₂CO₃ = 2 mole/2 : 2 mole/3 = 1 : 0.67
Na₂CO₃ as a limiting reactant (smaller)
Answer:
the equilibrium constant is 1.8 x 10⁻5 and strongly favor the reactants.
Explanation:
the chemical reaction provided for the two equation are the same but different direction i.e a reversible reaction. Assuming, the mass of reactants and product and temperature remain constant.
therefore, the equilibrium constant K, is 1.8 x 10⁻5. this is a very small value of K, thereby strongly favor the backward direction to form reactant.
Answer:
<h2>136.2 mL</h2>
Explanation:
The volume of a substance when given the density and mass can be found by using the formula

From the question
mass = 425
density = 3.12 g/cm³
We have

Since cm³ = mL
We have the final answer as
<h3>136.2 mL</h3>
Hope this helps you