1 mol of any gas or mix of gases at STP conditions will have a volume of 22.4 L. Since the problem doesn’t said what are the conditions I will asume that are STP condition and the volume of one mole of the mix will have a volume of 22.4 L.
You may know that density is
D=m/v
In one mole of air I will have 80% of Nitrogen (N2) and 20% oxygen (O2).
So the mass of one mole of air will be
14 x2x0.80+16x2x0.20 = 22.4 g + 6.4 g = 28.8 g
D= 28.8/22.4 = 1.28 g/L
Of course if the temperature is higher the density will be smaller because the volume of one mole will be bigger and viceversa if the temperature decrease. Also if the pressure is different than one atm the volume of a mol will change.
Answer:
F<S<Na<Ga<Sr
Explanation:
Atomic radius increased from the right of the periodic table to left, and from the top to the down
Answer:
Difference of the enthalpy (of a system) minus the product of the entropy and absolute temperature
Explanation:
The basis of spontaneity in a chemical reaction is that ∆G must be negative. ¡∆G is known as the change in free energy of a system. If ∆G is negative, then the reaction will occur without any external help (the reaction is spontaneous at room temperature).
∆G is given by;
∆G= ∆H -T∆S
Where;
∆H= change in enthalpy of the system
T= absolute temperature of the system
∆S= change in entropy
Hence; when ∆H -T∆S gives a negative result, the reaction proceeds without any external help.
I would think the answer would be C. Based off of what I've learned and heard. Sorry if it's not the correct answer though.