Answer: y = 2.4×10^-6m or y= 2.4μm
Explanation: The formulae for the distance between the central bright fringe to any other fringe in pattern is given as
y = R×mλ/d
Where y = distance between nth fringe and Central bright spot fringe. 
m = position of fringe = 4
λ = wavelength of light= 600nm = 600×10^-9 m
d = distance between slits = 1.50×10^-5m
R = distance between slit and screen = 2m
y = 2 × 4 × 600×10^-9/2
y = 4800×10^-9/2
y = 2400 × 10^-9
y = 2.4×10^-6m or y= 2.4μm
 
        
             
        
        
        
Answer:

Explanation:
Given that,
A radio wave transmits 38.5 W/m² of power per unit area.
A flat surface of area A is perpendicular to the direction of propagation of the wave.
We need to find the radiation pressure on it. It is given by the formula as follows :

Where
c is speed of light
Putting all the values, we get :

So, the radiation pressure is 
.
 
        
             
        
        
        
Answer:
0.03 A
Explanation:
From the question given above, the following data were obtained:
Voltage (V) = 12 V
Resistor (R) = 470 Ω
Current (I) =?
From ohm's law, the voltage, current and resistor are related by the following formula:
Voltage = current × resistor
V = IR 
With the above formula, we can obtain the current in the circuit as follow:
Voltage (V) = 12 V
Resistor (R) = 470 Ω
Current (I) =?
V = IR
12 = I × 470
Divide both side by 470
I = 12 / 470
I = 0.03 A
Thus, the current in the circuit is 0.03 A
 
        
                    
             
        
        
        
Let us assume the upstream rowing rate of Alicia = x
Let us assume the downstream rowing rate of Alicia = y
We already know that
Travelling time = Distance traveled/rowing rate
Then
6/(x + 3) = 4/x
6x = 4x + 12
6x - 4x = 12
2x = 12
x = 6
Then
Rowing rate of Alicia going upstream = 6 miles per hour
Rowing rate of Alicia going downstream = 9 miles per hour.
        
                    
             
        
        
        
Answer:
 at t=46/22, x=24 699/1210 ≈ 24.56m
Explanation:
The general equation for location is:
x(t) = x₀ + v₀·t + 1/2 a·t²
Where:
x(t) is the location at time t. Let's say this is the height above the base of the cliff.
x₀ is the starting position. At the base of the cliff we'll take x₀=0 and at the top x₀=46.0
v₀ is the initial velocity. For the ball it is 0, for the stone it is 22.0.
a is the standard gravity. In this example it is pointed downwards at -9.8 m/s².
Now that we have this formula, we have to write it two times, once for the ball and once for the stone, and then figure out for which t they are equal, which is the point of collision.
Ball: x(t) = 46.0 + 0 - 1/2*9.8 t²
Stone: x(t) = 0 + 22·t - 1/2*9.8 t²
Since both objects are subject to the same gravity, the 1/2 a·t² term cancels out on both side, and what we're left with is actually quite a simple equation:
46 = 22·t 
so t = 46/22 ≈ 2.09
Put this t back into either original (i.e., with the quadratic term) equation and get:
x(46/22) = 46 - 1/2 * 9.806 * (46/22)² ≈ 24.56 m