1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Butoxors [25]
1 year ago
10

You use a lever to lift a heavy tree branch you apply a force of 50 n and the lever lifts the branch

Physics
1 answer:
valentinak56 [21]1 year ago
5 0

1.8 is the mechanical advantage of the lever.

<h3>Definition of mechanical advantage</h3>

The theoretical mechanical advantage of a system is the ratio of the force that performs the useful work to the force applied, assuming there is no friction in the system.

The advantage gained by the use of a mechanism in transmitting force specifically the ratio of the force that performs the useful work of a machine to the force that is applied to the machine.

Mechanical advantage is given by the ratio of the load lifted to the force applied to lift the load.

In this case, Mechanical advantage=L/E where L is the load and E is the effort applied.

Mechanical advantage= 90/50 =1.8

Question-you use a lever to lift a heavy tree branch. you apply a force of 50 n and the lever lifts the branch with a force of 90 n. what is the mechanical advantage of the lever?

To learn more about the Mechanical advantage visit the link

brainly.com/question/16617083

#SPJ4

You might be interested in
20% Part (a) Use an "E Field Sensor" and move it along either equipotential. What can you say about the E field along an equipot
Alex

Answer:

b. Constant magnitude, but varying direction, perpendicular to the equipotential.

Explanation:

As we know that the relation between electric field and electric potential is given as

\Delta E = -\frac{dV}{dr}

here if we say that potential is constant because electric field sensor is moving along equi-potential line.

Then we will say

V = constant

so we have

\Delta E = 0

so electric field will remain constant always in magnitude and always remains perpendicular to the surface

so we have

b. Constant magnitude, but varying direction, perpendicular to the equipotential.

6 0
3 years ago
Which of the following objects has the greatest density
maks197457 [2]
The density is determined on the steepness of the slope. The greater the density is bases upon the steepest slope. To conclude, I'd say Line A has the steepest slope therefore has the greatest density.
6 0
2 years ago
Read 2 more answers
Use the dot product to find the magnitude of u if u = 6i - 3j
LuckyWell [14K]
Vector u :
u = 6 i - 3 j
The magnitude of vector u :
| u | = \sqrt{6 ^{2}+(-3) ^{2}  } = \sqrt{36+9}= \\  \sqrt{45}= \sqrt{9*5}=3  \sqrt{5}
Answer:
The magnitude of vector u is 3√5. 
3 0
3 years ago
How many revolutions per minute would a 23 m -diameter Ferris wheel need to make for the passengers to feel "weightless" at the
kirza4 [7]

Answer:

Approximately 6.2\; {\rm rpm}, assuming that the gravitational field strength is g = 9.81\; {\rm m\cdot s^{-2}}.

Explanation:

Let \omega denote the required angular velocity of this Ferris wheel. Let m denote the mass of a particular passenger on this Ferris wheel.

At the topmost point of the Ferris wheel, there would be at most two forces acting on this passenger:

  • Weight of the passenger (downwards), m\, g, and possibly
  • Normal force F_\text{normal} that the Ferris wheel exerts on this passenger (upwards.)

This passenger would feel "weightless" if the normal force on them is 0- that is, F_\text{normal} = 0.

The net force on this passenger is (m\, g - F_\text{normal}). Hence, when F_\text{normal} = 0, the net force on this passenger would be equal to m\, g.

Passengers on this Ferris wheel are in a centripetal motion of angular velocity \omega around a circle of radius r. Thus, the centripetal acceleration of these passengers would be a = \omega^{2}\, r. The net force on a passenger of mass m would be m\, a = m\, \omega^{2}\, r.

Notice that m\, \omega^{2} \, r = (\text{Net Force}) = m\, g. Solve this equation for \omega, the angular speed of this Ferris wheel. Since g = 9.81\; {\rm m\cdot s^{-2}} and r = 23\; {\rm m}:

\begin{aligned} \omega^{2} = \frac{g}{r}\end{aligned}.

\begin{aligned} \omega &= \sqrt{\frac{g}{r}} \\ &= \sqrt{\frac{9.81\; {\rm m \cdot s^{-2}}}{23\; {\rm m}}} \\ &\approx 0.653\; {\rm rad \cdot s^{-1}} \end{aligned}.

The question is asking for the angular velocity of this Ferris wheel in the unit {\rm rpm}, where 1\; {\rm rpm} = (2\, \pi\; {\rm rad}) / (60\; {\rm s}). Apply unit conversion:

\begin{aligned} \omega &\approx 0.653\; {\rm rad \cdot s^{-1}} \\ &= 0.653\; {\rm rad \cdot s^{-1}} \times \frac{1\; {\rm rpm}}{(2\, \pi\; {\rm rad}) / (60\; {\rm s})} \\ &= 0.653\; {\rm rad \cdot s^{-1} \times \frac{60\; {\rm s}}{2\, \pi\; {\rm rad}} \times 1\; {\rm rpm} \\ &\approx 6.2\; {\rm rpm} \end{aligned}.

3 0
1 year ago
The coordinates 40 degrees north and 100 degrees east falls in what country?
garik1379 [7]

We can find for the country by using a map with angle coordinates. Based on the map that I found online, the country which is located at around 40 degrees north and 100 degrees east is no other than:

<span>China</span>

7 0
3 years ago
Read 2 more answers
Other questions:
  • Which of the following is not a multicellular organism?
    13·2 answers
  • Stars are small versions of the sun, but they end up dying. Will the sun ever die like stars?
    10·2 answers
  • Which statement is true about the Big Bang Theory?
    13·1 answer
  • The charge of an electronic is A.-2 B.-1 C.0 D.+1
    7·1 answer
  • This type of water occurs as a liquid resource that is dispersed through numerous holes, pores, fractures, and cavities in bodie
    11·2 answers
  • What pressure is exerted on the bottom of a 0.500-m-wide by 0.900-m-long water tank that can hold 50.0 kg of water by the weight
    7·1 answer
  • Can someone answer this science question NO LINKS !!!!
    6·1 answer
  • You weigh 580 N on Earth. If you were to go to Mars, where its gravitational pull is 3 . 7 11 m /s 2 , what would you weigh? (Hi
    9·2 answers
  • How do low energy electromagnetic waves compare with high energy electromagnetic waves? Select all
    6·1 answer
  • Plsss Help!!!!
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!