Answer:
Explanation:
The cannonball goes a horizontal distance of 275 m . It travels a vertical distance of 100 m
Time taken to cover vertical distance = t ,
Initial velocity u = 0
distance s = 100 m
acceleration a = 9.8 m /s²
s = ut + 1/2 g t²
100 = .5 x 9.8 x t²
t = 4.51 s
During this time it travels horizontally also uniformly so
horizontal velocity Vx = horizontal displacement / time
= 275 / 4.51 = 60.97 m /s
Vertical velocity Vy
Vy = u + gt
= 0 + 9.8 x 4.51
= 44.2 m /s
Resultant velocity
V = √ ( 44.2² + 60.97² )
= √ ( 1953.64 + 3717.34 )
= 75.3 m /s
Angle with horizontal Ф
TanФ = Vy / Vx
= 44.2 / 60.97
= .725
Ф = 36⁰ .
The total circuit current at the resonant frequency is 0.61 amps
What is a LC Circuit?
- A capacitor and an inductor, denoted by the letters "C" and "L," respectively, make up an LC circuit, also referred to as a tank circuit, a tuned circuit, or a resonant circuit.
- These circuits are used to create signals at particular frequencies or to receive signals from more complicated signals at particular frequencies.
Q =15 = (wL)/R
wL = 30 ohms = Xl
R = 2 ohms
Zs = R + jXl = 2 +j30 ohms where Zs is the series LR impedance
| Zs | = 30.07 <86.2° ohms
Xc = 1/(wC) = 30 ohms
The impedance of the LC circuit is found from:
Zp = (Zs)(-jXc)/( Zs -jXc)
Zp = (2+j30)(-j30)/(2 + j30-j30) = (900 -j60)2 = 450 -j30 = 451 < -3.81°
I capacitor = 277/-j30 = j9.23 amps
I Zs = 277/(2 +j30) = (554 - j8,310)/904 = 0.61 - j9.19 amps
I net = I cap + I Zs = 0.61 + j0.04 amps = 0.61 < 3.75° amps
Hence, the total circuit current at the resonant frequency is 0.61 amps
To learn more about LC Circuit from the given link
brainly.com/question/29383434
#SPJ4
There are none on the list you included with your question.
Well, the acceleration is the difference of speeds divided by the time period.

.
One rev/s is

, so our final result is

.
Answer:
hope it helps...
Explanation:
The Principle of Moments states that when a body is balanced, the total clockwise moment about a point equals the total anticlockwise moment about the same point.