A study occasionally the effect of anxiety (low vs. high) and stress (low vs. moderate vs. high) on test.
Everyone experiences anxiety occasionally, but persistent anxiety can reduce your quality of life. Though likely best known for altering behavior, worry can have negative effects on our physical health. Anxiety speeds up our heartbeat and breathing, concentrating blood flow to the parts of our brains that need it. You are getting ready for a challenging situation by having this extremely bodily reaction. Test performance may be impacted by anxiety. According to studies, pupils with low levels of test anxiety perform better on multiple-choice question (MCQ) exams than pupils with high levels of anxiety. Studies have occasionally that female students have greater levels of test anxiety than male students.
Learn more about anxiety here:
brainly.com/question/4913240
#SPJ4
Answer:

Explanation:
The heaviside function is defined as:

so we see that the Heaviside function "switches on" when
, and remains switched on when 
If we want our heaviside function to switch on when
, we need the argument to the heaviside function to be 0 when 
Thus we define a function f:

The
term inside the heaviside function makes sure to displace the function 5 units to the right.
Now we just need to add a scale up factor of 240 V, because thats the voltage applied after the heaviside function switches on. (
when
, so it becomes just a 1, which we can safely ignore.)
Therefore our final result is:

I have made a sketch for you, and added it as attachment.
Answer:

Explanation:
<u>Given Data:</u>
Length = l = 820 mm = 0.82 m
Acceleration due to gravity = g = 9.8 ms⁻²
<u>Required:</u>
Frequency = f = ?
<u>Formula:</u>

<u>Solution:</u>
![\displaystyle f =\frac{1}{2 \pi} \sqrt{\frac{g}{l} } \\\\Put\ the\ givens\\\\f=\frac{1}{2 \pi} \sqrt{\frac{9.8}{0.82} }\\\\ f = 0.159 \times \sqrt{11.95} \\\\f=0.159 \times 3.457\\\\f=0.55 \ Hz\\\\\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20f%20%3D%5Cfrac%7B1%7D%7B2%20%5Cpi%7D%20%5Csqrt%7B%5Cfrac%7Bg%7D%7Bl%7D%20%7D%20%5C%5C%5C%5CPut%5C%20the%5C%20givens%5C%5C%5C%5Cf%3D%5Cfrac%7B1%7D%7B2%20%5Cpi%7D%20%5Csqrt%7B%5Cfrac%7B9.8%7D%7B0.82%7D%20%7D%5C%5C%5C%5C%20f%20%3D%200.159%20%5Ctimes%20%5Csqrt%7B11.95%7D%20%5C%5C%5C%5Cf%3D0.159%20%5Ctimes%203.457%5C%5C%5C%5Cf%3D0.55%20%5C%20Hz%5C%5C%5C%5C%5Crule%5B225%5D%7B225%7D%7B2%7D)
Answer:
V_f = 287.04 mL
Explanation:
We are given the initial/original volume of the glycerine as 285 mL.
Now, after it is finally cooled back to 20.0 °C , its volume is given by the formula;
V_f = V_i (1 + βΔT)
Where;
V_f is the final volume
V_i is the original volume = 285 mL
β is the coefficient of expansion of glycerine and from online tables, it has a value of 5.97 × 10^(-4) °C^(−1)
Δt is change in temperature = final temperature - initial temperature = 32 - 20 = 12 °C
Thus, plugging in relevant values;
V_f = 285(1 + (5.97 × 10^(-4) × 12))
V_f = 287.04 mL
Answer:

Explanation:
What is said is that the meter fell d=18.3cm=0.183m under the action of gravity. We can use the formula for accelerated motion:

Since it departed from rest it will mean that:

So our time will be:

Which for our values is:
