The answer should be <span>balance electrically
</span><span>Chemical reactions that form ions should have a balanced charge. The example of the reaction is HCl. When forming ions, the equation should be:
HCl => </span>

+

In this case, the hydrogen has one plus charge and chlorine has one negative charge. The resultant should be zero, so it's balanced.
Data:
n (number of mols) = ?
V (volume) = 2.50 Liters
If:
1 L → 1000 g
2.50 L → y
y = 1000*2.50 = 2500 g
Therefore:
m (mass) = 2500 g
Now:
Molar Mass (MM) of oxygen = 16 g/mol
Formula:

Solving:


Answer:
The answer to your question is 160 g of Fe₂O₃
Explanation:
Data
mass of Fe = 112 g
mass of CO = in excess
mass of Fe₂O₃ = ?
Balanced chemical reaction
Fe₂O₃ + 3CO ⇒ 2Fe + 3CO₂
Process
1.- Calculate the molar mass of Fe₂O₃ and Fe
Molar mass Fe₂O₃ = (56 x 2) + (16 x 3) = 112 + 48 = 160 g
atomic mass of Fe = 56
2.- Use proportions to calculate the mass of Fe₂O₃ needed
160 g of Fe₂O₃ ------------------- 2(56) g of Fe
x g of Fe₂O₃ ------------------ 112 g of Fe
x = (112 x 160) / 2(56)
x = 17920/112
x = 160 g of Fe₂O₃
Potential energy is the energy stored. What do u think it is? (I don't really know)
The balanced molecular chemical equation for the reaction will be expressed as Cs₂CO₃ + Mg(NO₃)₂ -> 2CsNO₃ + MgCO₃
- For any chemical equation to be balanced, the number of moles of elements in the reactants must be equal to that of the product.
- According to the question, we are to write a balanced equation for the reaction in aqueous solution for cesium carbonate and magnesium nitrate
- The chemical formula for Cesium carbonate is Cs₂CO₃
- The chemical formula for magnesium nitrate is Mg(NO₃)₂
Hence the balanced molecular chemical equation for the reaction will be expressed as Cs₂CO₃ + Mg(NO₃)₂ -> 2CsNO₃ + MgCO₃
Learn more here: brainly.com/question/11904811