I think this is the answer
Two things that store chemical energy are coal, and wood cause when you have a fire you have to get the chemicals from somewhere to keep your fire live.
Answer : The number of moles of sulfur needed to oxidize will be, 3 moles
Solution : Given,
Moles of zinc = 3 moles
The balanced reaction will be,

By the stoichiometry, 1 mole of
ion react with the 1 mole of
to give 1 mole of zinc sulfide.
From the balanced reaction, we conclude that
As, 1 mole of zinc react with 1 mole of sulfur
So, 3 moles if zinc react with 3 moles of sulfur
Hence, the number of moles of sulfur needed to oxidize will be, 3 moles
Answer:
The correct answer is C)H2PO4-(aq) + H2O(l)--> H3O+(aq) + HPO42-(aq)
Explanation:
The acid dissociation equilibrium involves the loss of a proton of the acid to give the conjugated acid. In this case, the acid is H₂PO₄⁻ and it losses a proton (H⁺) to give the conjugated acid HPO₄²⁻ (without a proton and with 1 more negative charge). In the aqueous equilibrium, the proton is taken by H₂O molecule to give the hydronium ion H₃O⁺.
H₂PO₄⁻(aq) + H₂O(l)--> H₃O⁺(aq) + HPO₄²⁻(aq)
Answer:
[ N₂(g) ] = 0.016 M
Explanation:
N₂(g) + 3 H₂(g) ↔ 2 NH₃(g)
The equilibrium constant for the above reaction , can be written as the product of the concentration of product raised to the power of stoichiometric coefficients in a balanced equation of dissociation divided by the product of the concentration of reactant raised to the power of stoichiometric coefficients in the balanced equation of dissociation .
Hence ,
Kc = [ NH₃ (g) ]² / [ N₂(g) ] [ H₂(g) ]³
From the question ,
[ NH₃ (g) ] = 0.5 M
[ N₂(g) ] = ?
[ H₂(g) ] = 2.0 M
Kc = 2
Now, putting it in the above equation ,
Kc = [ NH₃ (g) ]² / [ N₂(g) ] [ H₂(g) ]³
2 = [ 0.5 M ]² / [ N₂(g) ] [ 2.0 M ]³
[ N₂(g) ] = 0.016 M .