5
if zero falls between two significant numbers it becomes significant.
Answer:
Second Trial satisfy principle of conservation of momentum
Explanation:
Given mass of ball A and ball B 
Let mass of ball
and
Final velocity of ball 
Final velocity of ball 
initial velocity of ball 
Initial velocity of ball 
Momentum after collision 
Momentum before collision 
Conservation of momentum in a closed system states that, moment before collision should be equal to moment after collision.
Now, 
Plugging each trial in this equation we get,
First Trial

momentum before collision
moment after collision
Second Trial

moment before collision
moment after collision
Third Trial

momentum before collision
moment after collision
Fourth Trial

momentum before collision
moment after collision
We can see only Trial- 2 shows the conservation of momentum in a closed system.
<em>Given that:</em>
mass of the ball (m) = 0.5 Kg ,
ball strikes the wall (v₁) = 5 m/s ,
rebounds in opposite direction (v₂) = 2 m/s,
time duration (t) = 0.01 s,
<em> Determine the force (F) = ?</em>
We know that from Newton's II law,
<em>F = m. a</em> Newtons
(velocity acting in opposite direction, so <em>a = ( (v₁ + v₂)/t</em>
= m × (v₁ + v₂)/t
= 0.5 × (5 + 2)/0.01
= 350 N
<em>The force acting up on the ball is 350 N</em>
The period of the pendulum is the reciprocal of the frequency:

The period of the pendulum is given by

where L is the length of the pendulum, and g the acceleration of gravity. By re-arranging the formula and using the value of T we found before, we can calculate the length of the pendulum L: