1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nirvana33 [79]
3 years ago
11

A block of mass m = 1.5 kg is released from rest at a height of H = 0.81 m on a curved frictionless ramp. At the foot of the ram

p is a spring whose spring constant is k = 250.0 N/m. What is the maximum compression of the spring, x?
Physics
1 answer:
kogti [31]3 years ago
7 0

Answer:

0.31 m

Explanation:

m = mass of the block = 1.5 kg

H = height from which the block is released on ramp = 0.81 m

k = spring constant of the spring = 250 N/m

x = maximum compression of the spring

using conservation of energy

Spring potential energy gained by spring = Potential energy lost by block

(0.5) k x² = mgH

(0.5) (250) x² = (1.5) (9.8) (0.81)

x = 0.31 m

You might be interested in
Two objects are moving at equal speed along a level, frictionless surface. the second object has twice the mass of the first obj
Zarrin [17]

first object gors highest

second object goes lowest.


5 0
3 years ago
Two converging lenses are placed 30 cm apart. The focal length of the lens on the right is 20 cm while the focal length of the l
Masja [62]

Answer:

a)   I2 = 3 (o-10) / (o- 30) , b)   h ’/h=  3 (o-10) / o (o-30)

Explanation:

The builder's equation is

          1 / f = 1 / o + 1 / i

Where f is the focal length, or e i are the distance to the object and image, respectively

As the separation between the lenses is greater than the focal distances, we must work them individually and separately. Let's start with the leftmost lens with focal length f = 15 cm

Let's calculate the position of the image of this lens

         1 / i1 = 1 / f - 1 / o

         1 / i1 = 1/15 - 1 / o

         i1 = o 15 / (o-15)

Let's calculate the distance to the image of the second lens, for this the image of the first is the distance to the object of the second

        o2 = d-i1

We write the builder equation

       1 / f2 = 1 / o2 + 1 / i2

       1 / i2 = 1 / f2 -1 / o2

       1 / i2 = 1 / f2 - 1 / (d-i1)

       1 / i2 = 1/20 - 1 / (d-i1)            (1)

Let's evaluate the last term

      d-i1 = d - 15 o / (o-15)

      d-i1 = (d (o-15) - 15 o) / (o-15)

      d- i1 = (30 or -30 15 -15 o) / (o-15)

      d-i1 = (15 or - 450) / (o- 15)

      d-i1 = = (15 or -450) / (o-15)

replace in 1

      1 / i2 = 1/20 - (or - 15) / (15 or -450)

      1 / i2 = [(15 o-450) - (o-15) 20] / (15 or -150)

      1 / i2 = (15 or - 450 - 20 or + 300) / (15 or - 150)

      1 / i2 = (-5 or -150) / (15 or -150)

      1 / i2 = (or -30) / (3 or - 30)

      I2 = 3 (o-10) / (o- 30)

Part B

The height of the image, we use the magnification equation

     m = h ’/ h = - i / o

     h ’= - h i / o

In our case

     h ’= h i2 / o

     h ’= h 3 (o-10) / o (o-30)

If they give the distance to the object it is easier

5 0
3 years ago
a brick is suspended above the ground at a height of 6.6 m. it has a mass of 5.3 kg. what is the potential energy of the brick
Svetradugi [14.3K]
The formula for potential energy is
E(p) = mgh

(Mass x gravity x height)

Therefore energy = (5.3)(9.8)(6.6)
= 342.8 J

How did I get 9.8?
9.8 is the constant for gravity
8 0
3 years ago
A shot-putter accelerates a 7.2 kg shot from rest to 17 m/s . what work did the shot-putter do on the ball?
garri49 [273]
<span>1.0x10^3 Joules The kinetic energy a body has is expressed as the equation E = 0.5 M V^2 where E = Energy M = Mass V = Velocity Since the shot was at rest, the initial energy is 0. Let's calculate the energy that the shot has while in motion E = 0.5 * 7.2 kg * (17 m/s)^2 E = 3.6 kg * 289 m^2/s^2 E = 1040.4 kg*m^2/s^2 E = 1040.4 J So the work performed on the shot was 1040.4 Joules. Rounding the result to 2 significant figures gives 1.0x10^3 Joules</span>
6 0
3 years ago
a ball is thrown striaght up in the air and then falls back to earth. if the downward fall takes 2.2s, how fast is the ball trav
lapo4ka [179]

The velocity of the ball when it strikes the ground, given the data is 21.56 m/s

<h3>Data obtained from the question</h3>

From the question given above, the following data were obtained:

  • Time to reach ground from maximum height (t) = 2.2 s
  • Initial velocity (u) = 0 m/s
  • Acceleration due to gravity (g) = 9.8 m/s²
  • Final velocity (v) =?

<h3>How to determine the velocity when the ball strikes the ground</h3>

The velocity of the ball when it strikes the ground can be obtained as illustrated below:

v = u + gt

v = 0 + (9.8 × 2.2)

v = 0 + 21.56

v = 21.56 m/s

Thus, the velocity of the ball when it strikes the ground is 21.56 m/s

Learn more about motion under gravity:

brainly.com/question/22719691

#SPJ1

5 0
1 year ago
Other questions:
  • Which statement best describes plastic's ability to conduct electricity?
    11·2 answers
  • Which two forms of energy travel in waves​
    12·1 answer
  • A 500 N passenger weighs 24500 N elevator that rises 30 m in exactly 1 minute how much power is needed for the elevators trip
    7·1 answer
  • Why is it important for DNA to be copied before cell division?
    15·1 answer
  • A football player is preparing to punt the ball down the field. He drops the ball from rest and it falls vertically 1.0 m down o
    13·1 answer
  • A cannon of mass 5.71 x 103 kg is rigidly bolted to the earth so it can recoil only by a negligible amount. The cannon fires a 7
    15·1 answer
  • What does decelerate mean
    10·1 answer
  • Two identical circular, wire loops 35.0 cm in diameter each carry a current of 2.80 A in the same direction. These loops are par
    13·1 answer
  • Which method of heat transfer transmits heat from the lower layers of air to the upper layers of air as the lower layers of air
    13·2 answers
  • "A comet is not actually a star". Give two reasons in favour of this statement.​
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!